Compressive strength optimization of concrete mixed with waste ceramics and fly ash

Waste utilization has been one of the most vital aspects in the construction industry towards sustainability. It addresses the dilemmas that waste disposals face specifically the non-biodegradable materials such as damaged ceramics and industrial byproducts like fly ash. Recent studies have shown th...

Full description

Saved in:
Bibliographic Details
Main Authors: Elevado, Kenneth Jae T., Galupino, Joenel G., Gallardo, Ronaldo S.
Format: text
Published: Animo Repository 2019
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/2570
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:Waste utilization has been one of the most vital aspects in the construction industry towards sustainability. It addresses the dilemmas that waste disposals face specifically the non-biodegradable materials such as damaged ceramics and industrial byproducts like fly ash. Recent studies have shown that damaged ceramics and fly ash obtain physical properties that are similar to the conventional aggregates of concrete and cement, respectively. In this study, experimental procedures were conducted to evaluate the compressive strength of concrete mixed with varying amount of fly ash and waste ceramics following the compressive strength test stipulated under ASTM C 39. Furthermore, strength development was also accounted through subjecting the concrete specimens to different curing periods. Response Surface Methodology (RSM) was used to provide the optimum combination of fly ash and waste ceramics that produces the most desirable compressive strength. The optimization results indicated that the optimum combination of waste ceramic tiles and fly ash replacements was 75% and 25% substitutions, respectively. This combination attains the maximum nominal compressive strength of 37.188 MPa. Similarly, the resulting Response Surface Methodology (RSM) model was validated to ensure that the model is acceptable. © Int. J. of GEOMATE.