An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development
An algebraic technique based on pinch analysis has been developed for the planning of non-conventional natural gas (NG) field development projects. The development of NG fields with high carbon dioxide (CO2) content has become increasingly common in the oil and gas industry. In such cases, the raw N...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2018
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/2751 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-3750 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-37502022-08-10T07:44:24Z An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development Parand, Reza Foo, Dominic C.Y. Ooi, Raymond E.H. Tan, Raymond Girard R. Lee, Jui Yuan An algebraic technique based on pinch analysis has been developed for the planning of non-conventional natural gas (NG) field development projects. The development of NG fields with high carbon dioxide (CO2) content has become increasingly common in the oil and gas industry. In such cases, the raw NG needs to be treated in situ for CO2 removal to meet the sales gas specifications before being sent to the onshore gas processing plants (GPPs). The captured CO2 can either be reinjected into the reservoir for permanent storage, or utilised for enhanced oil recovery (EOR), for which partial sequestration may also be achieved. These options create the need to develop systematic techniques to provide high-level decision support for field development planning. The algebraic technique developed in this work overcomes the limitations of a recently developed graphical technique (Foo et al., 2016), as it relaxes the previous simplistic assumptions on stream purity requirements. Two case studies are used to illustrate the methodology. © 2018 Institution of Chemical Engineers 2018-11-01T07:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/2751 Faculty Research Work Animo Repository Carbon sequestration Gas fields Natural gas Gas industry Chemical Engineering |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Carbon sequestration Gas fields Natural gas Gas industry Chemical Engineering |
spellingShingle |
Carbon sequestration Gas fields Natural gas Gas industry Chemical Engineering Parand, Reza Foo, Dominic C.Y. Ooi, Raymond E.H. Tan, Raymond Girard R. Lee, Jui Yuan An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
description |
An algebraic technique based on pinch analysis has been developed for the planning of non-conventional natural gas (NG) field development projects. The development of NG fields with high carbon dioxide (CO2) content has become increasingly common in the oil and gas industry. In such cases, the raw NG needs to be treated in situ for CO2 removal to meet the sales gas specifications before being sent to the onshore gas processing plants (GPPs). The captured CO2 can either be reinjected into the reservoir for permanent storage, or utilised for enhanced oil recovery (EOR), for which partial sequestration may also be achieved. These options create the need to develop systematic techniques to provide high-level decision support for field development planning. The algebraic technique developed in this work overcomes the limitations of a recently developed graphical technique (Foo et al., 2016), as it relaxes the previous simplistic assumptions on stream purity requirements. Two case studies are used to illustrate the methodology. © 2018 Institution of Chemical Engineers |
format |
text |
author |
Parand, Reza Foo, Dominic C.Y. Ooi, Raymond E.H. Tan, Raymond Girard R. Lee, Jui Yuan |
author_facet |
Parand, Reza Foo, Dominic C.Y. Ooi, Raymond E.H. Tan, Raymond Girard R. Lee, Jui Yuan |
author_sort |
Parand, Reza |
title |
An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
title_short |
An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
title_full |
An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
title_fullStr |
An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
title_full_unstemmed |
An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
title_sort |
algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development |
publisher |
Animo Repository |
publishDate |
2018 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/2751 |
_version_ |
1740844764576612352 |