A noncontact pH level sensing indicator using computer vision and knowledge-based systems
A computer vision-based approach in identifying the pH level of a substance requires the use of multiple computer or machine vision techniques which include image processing, and object/contour detection, counting, or tracking. This paper proposes a pH level indicator system with knowledge-based sys...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2017
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/2932 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Summary: | A computer vision-based approach in identifying the pH level of a substance requires the use of multiple computer or machine vision techniques which include image processing, and object/contour detection, counting, or tracking. This paper proposes a pH level indicator system with knowledge-based systems (KBS) which has the capability of detecting, tracking, and identifying the level of a pH level indicator image. Moreover, the data that the system utilizes derives from KBS instead of being explicitly programmed. Furthermore, the study has a graphical user interface which allows the operator to easily use the system. The user may also add data to the knowledge-base, which means that the system improves over time. Compared with the traditional pH monitoring setup, the results in this study show that a computer vision-based approach is viable in determining the pH level of a substance. © 2017 IEEE. |
---|