Speaker feature modeling utilizing constrained maximum likelihood linear regression and Gaussian mixture models
This paper describes a speaker recognition system based on feature extraction utilizing the constrained maximum likelihood linear regression (CMLLR) speaker adaptation, while using Gaussian mixture models (GMM) to model the speaker and background models. For the input acoustic signals, the cepstral...
Saved in:
主要作者: | Magsino, Elmer R. |
---|---|
格式: | text |
出版: |
Animo Repository
2020
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/faculty_research/2974 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
相似書籍
-
Wavelet analysis of speaker-dependent speech features
由: Wong, Jocelynn Olida
出版: (2001) -
Speaker verification with probability measurements
由: Vinluan, Anthony S.
出版: (2007) -
Speaker-independent speech recognition system using Kohonen self-organizing feature map
由: Bacong, Mark Anthony, et al.
出版: (1999) -
A two-stage speaker adaptation approach for subspace gaussian mixture model based nonnative speech recognition
由: Li, B., et al.
出版: (2014) -
A Small vocabulary automatic speech profanity suppression system using Hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework
由: Ablaza, Fernando I., Jr., et al.
出版: (2010)