Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors
Carrier dynamics and photoconductivity in epitaxial-grown low-temperature GaAs on nominal and vicinal Si(1 0 0) substrates ('LT-GaAs/Si') were studied to predict their actual performance as THz photoconductive antenna (PCA) detectors. An optical-pump terahertz-probe technique was used to o...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2021
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/3299 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-4261 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-42612022-06-28T03:45:41Z Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors Afalla, Jessica Catindig, Gerald De Los Reyes, Alexander Prieto, Elizabeth Faustino, Maria Angela Vistro, Victor Gonzales, Karl Cedric Bardolaza, Hannah Mag-Usara, Valynn Katrine Husay, Horace Andrew Muldera, Joselito Cabello, Neil Irvin Ferrolino, John Paul Kitahara, Hideaki Somintac, Armando Salvador, Arnel A. Tani, Masahiko Estacio, Elmer Carrier dynamics and photoconductivity in epitaxial-grown low-temperature GaAs on nominal and vicinal Si(1 0 0) substrates ('LT-GaAs/Si') were studied to predict their actual performance as THz photoconductive antenna (PCA) detectors. An optical-pump terahertz-probe technique was used to obtain the transmittance, carrier lifetime and photoconductivity of two LT-GaAs/Si samples, grown using different substrates and different growth protocols. The LT-GaAs grown on Si(1 0 0) substrate with a 4° tilt to 1 1 0 has better crystallinity, in agreement with other reports; while the LT-GaAs layer grown on nominal Si(1 0 0) substrate, though more structurally defective, has a much faster electron trapping time. Fabricated test PCAs with either dipole or bowtie geometries confirm the characterization results. The photoconductivity and carrier lifetime results manifest in the PCA performance, in responsivity, and in detection bandwidth. The prototypes' sensitivities, bandwidths and dynamic ranges show that with some growth optimization, LT-GaAs/Si can be tailored to create economical, broadband THz detectors. © 2019 IOP Publishing Ltd. 2021-04-20T03:44:38Z text https://animorepository.dlsu.edu.ph/faculty_research/3299 Faculty Research Work Animo Repository Gallium arsenide Silicon Photoconductivity Terahertz technology Physics |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Gallium arsenide Silicon Photoconductivity Terahertz technology Physics |
spellingShingle |
Gallium arsenide Silicon Photoconductivity Terahertz technology Physics Afalla, Jessica Catindig, Gerald De Los Reyes, Alexander Prieto, Elizabeth Faustino, Maria Angela Vistro, Victor Gonzales, Karl Cedric Bardolaza, Hannah Mag-Usara, Valynn Katrine Husay, Horace Andrew Muldera, Joselito Cabello, Neil Irvin Ferrolino, John Paul Kitahara, Hideaki Somintac, Armando Salvador, Arnel A. Tani, Masahiko Estacio, Elmer Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
description |
Carrier dynamics and photoconductivity in epitaxial-grown low-temperature GaAs on nominal and vicinal Si(1 0 0) substrates ('LT-GaAs/Si') were studied to predict their actual performance as THz photoconductive antenna (PCA) detectors. An optical-pump terahertz-probe technique was used to obtain the transmittance, carrier lifetime and photoconductivity of two LT-GaAs/Si samples, grown using different substrates and different growth protocols. The LT-GaAs grown on Si(1 0 0) substrate with a 4° tilt to 1 1 0 has better crystallinity, in agreement with other reports; while the LT-GaAs layer grown on nominal Si(1 0 0) substrate, though more structurally defective, has a much faster electron trapping time. Fabricated test PCAs with either dipole or bowtie geometries confirm the characterization results. The photoconductivity and carrier lifetime results manifest in the PCA performance, in responsivity, and in detection bandwidth. The prototypes' sensitivities, bandwidths and dynamic ranges show that with some growth optimization, LT-GaAs/Si can be tailored to create economical, broadband THz detectors. © 2019 IOP Publishing Ltd. |
format |
text |
author |
Afalla, Jessica Catindig, Gerald De Los Reyes, Alexander Prieto, Elizabeth Faustino, Maria Angela Vistro, Victor Gonzales, Karl Cedric Bardolaza, Hannah Mag-Usara, Valynn Katrine Husay, Horace Andrew Muldera, Joselito Cabello, Neil Irvin Ferrolino, John Paul Kitahara, Hideaki Somintac, Armando Salvador, Arnel A. Tani, Masahiko Estacio, Elmer |
author_facet |
Afalla, Jessica Catindig, Gerald De Los Reyes, Alexander Prieto, Elizabeth Faustino, Maria Angela Vistro, Victor Gonzales, Karl Cedric Bardolaza, Hannah Mag-Usara, Valynn Katrine Husay, Horace Andrew Muldera, Joselito Cabello, Neil Irvin Ferrolino, John Paul Kitahara, Hideaki Somintac, Armando Salvador, Arnel A. Tani, Masahiko Estacio, Elmer |
author_sort |
Afalla, Jessica |
title |
Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
title_short |
Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
title_full |
Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
title_fullStr |
Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
title_full_unstemmed |
Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors |
title_sort |
ultrafast carrier dynamics and thz conductivity in epitaxial-grown lt-gaas on silicon for development of thz photoconductive antenna detectors |
publisher |
Animo Repository |
publishDate |
2021 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/3299 |
_version_ |
1736864225452621824 |