A computational approach to multistationarity of power-law kinetic systems

This paper presents a computational solution to determine if a chemical reaction network endowed with power-law kinetics (PLK system) has the capacity for multistationarity, i.e., whether there exist positive rate constants such that the corresponding differential equations admit multiple positive s...

Full description

Saved in:
Bibliographic Details
Main Authors: Hernandez, Bryan S., Mendoza, Eduardo R., de los Reyes, Aurelio A.
Format: text
Published: Animo Repository 2020
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/faculty_research/3982
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Description
Summary:This paper presents a computational solution to determine if a chemical reaction network endowed with power-law kinetics (PLK system) has the capacity for multistationarity, i.e., whether there exist positive rate constants such that the corresponding differential equations admit multiple positive steady states within a stoichiometric class. The approach, which is called the “Multistationarity Algorithm for PLK systems” (MSA), combines (i) the extension of the “higher deficiency algorithm” of Ji and Feinberg for mass action to PLK systems with reactant-determined interactions, and (ii) a method that transforms any PLK system to a dynamically equivalent one with reactant-determined interactions. Using this algorithm, we obtain two new results: the monostationarity of a popular model of anaerobic yeast fermentation pathway, and the multistationarity of a global carbon cycle model with climate engineering, both in the generalized mass action format of biochemical systems theory. We also provide examples of the broader scope of our approach for deficiency one PLK systems in comparison to the extension of Feinberg’s “deficiency one algorithm” to such systems. © 2019, Springer Nature Switzerland AG.