Neural machine translation for Cebuano to Tagalog with subword unit translation
The Philippines is an archipelago composed of 7, 641 different islands with more than 150 different languages. This linguistic differences and diversity, though may be seen as a beautiful feature, have contributed to the difficulty in the promotion of educational and cultural development of differen...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Animo Repository
2019
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/4395 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-5200 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-52002021-12-03T07:57:49Z Neural machine translation for Cebuano to Tagalog with subword unit translation Adlaon, Kristine Mae M. Marcos, Nelson The Philippines is an archipelago composed of 7, 641 different islands with more than 150 different languages. This linguistic differences and diversity, though may be seen as a beautiful feature, have contributed to the difficulty in the promotion of educational and cultural development of different domains in the country. An effective machine translation system solely dedicated to cater Philippine languages will surely help bridge this gap. In this research work, a never before applied approach for language translation to a Philippine language was used for a Cebuano to Tagalog translator. A Recurrent Neural Network was used to implement the translator using OpenNMT sequence modeling tool in TensorFlow. The performance of the translation was evaluated using the BLEU Score metric. For the Cebuano to Tagalog translation, BLEU produced a score of 20.01. A subword unit translation for verbs and copyable approach was performed where commonly seen mistranslated words from the source to the target were corrected. The BLEU score increased to 22.87. Though slightly higher, this score still indicates that the translation is somehow understandable but is not yet considered as a good translation. © 2018 IEEE. 2019-01-28T08:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/4395 info:doi/10.1109/IALP.2018.8629153 Faculty Research Work Animo Repository Machine translating Natural language processing (Computer science) Computer Sciences |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Machine translating Natural language processing (Computer science) Computer Sciences |
spellingShingle |
Machine translating Natural language processing (Computer science) Computer Sciences Adlaon, Kristine Mae M. Marcos, Nelson Neural machine translation for Cebuano to Tagalog with subword unit translation |
description |
The Philippines is an archipelago composed of 7, 641 different islands with more than 150 different languages. This linguistic differences and diversity, though may be seen as a beautiful feature, have contributed to the difficulty in the promotion of educational and cultural development of different domains in the country. An effective machine translation system solely dedicated to cater Philippine languages will surely help bridge this gap. In this research work, a never before applied approach for language translation to a Philippine language was used for a Cebuano to Tagalog translator. A Recurrent Neural Network was used to implement the translator using OpenNMT sequence modeling tool in TensorFlow. The performance of the translation was evaluated using the BLEU Score metric. For the Cebuano to Tagalog translation, BLEU produced a score of 20.01. A subword unit translation for verbs and copyable approach was performed where commonly seen mistranslated words from the source to the target were corrected. The BLEU score increased to 22.87. Though slightly higher, this score still indicates that the translation is somehow understandable but is not yet considered as a good translation. © 2018 IEEE. |
format |
text |
author |
Adlaon, Kristine Mae M. Marcos, Nelson |
author_facet |
Adlaon, Kristine Mae M. Marcos, Nelson |
author_sort |
Adlaon, Kristine Mae M. |
title |
Neural machine translation for Cebuano to Tagalog with subword unit translation |
title_short |
Neural machine translation for Cebuano to Tagalog with subword unit translation |
title_full |
Neural machine translation for Cebuano to Tagalog with subword unit translation |
title_fullStr |
Neural machine translation for Cebuano to Tagalog with subword unit translation |
title_full_unstemmed |
Neural machine translation for Cebuano to Tagalog with subword unit translation |
title_sort |
neural machine translation for cebuano to tagalog with subword unit translation |
publisher |
Animo Repository |
publishDate |
2019 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/4395 |
_version_ |
1767196083370328064 |