Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles
There is increasing interest in synthesis of silicon dioxide (SiO2) nanoparticles from agricultural biomass waste because the process is cost-efficient and eco-friendly. However, the application of rice straw SiO2 nanoparticles as enhanced oil recovery (EOR) agents have not been examined in detail....
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
2023
|
Online Access: | http://scholars.utp.edu.my/id/eprint/34133/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143742961&doi=10.1016%2fj.petrol.2022.111292&partnerID=40&md5=4f478c7d2c028cb12e67da2e95d9a9b2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
oai:scholars.utp.edu.my:34133 |
---|---|
record_format |
eprints |
spelling |
oai:scholars.utp.edu.my:341332023-01-04T02:45:56Z http://scholars.utp.edu.my/id/eprint/34133/ Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles Yekeen, N. Salampessy, S.N. Abu Bakar, A.H. Ali, M. Okunade, O.A. Musa, S.A. Bavoh, C.B. There is increasing interest in synthesis of silicon dioxide (SiO2) nanoparticles from agricultural biomass waste because the process is cost-efficient and eco-friendly. However, the application of rice straw SiO2 nanoparticles as enhanced oil recovery (EOR) agents have not been examined in detail. Moreover, the pore-scale mechanisms governing the mobilization and displacement of resident oil during rice straw silica nanofluids (RS SNF) flooding is rarely reported in literature. In this study, SiO2 nanoparticles (nanosilica) were synthesized from rice straw and characterized. Oil-water interfacial tension (IFT) and contact angles were measured to assess the performance of RS SNF as EOR agents. Pore-scale visualization experiments were conducted using 2-dimensional micromodel to identify the prevailing EOR mechanisms of RS SNF flooding. Significant reduction in oil-water IFT and contact angles were obtained in presence of RS SNF. These results were comparable to the performance of commercial silica nanofluids, suggesting that RS SNF could be utilized as favourable substitute to commercial SNF. The ideal rice straw nanosilica concentration for achieving optimum residual oil mobilization and microscopic sweep was identified as 0.1 wt from pore-scale visualization experiments. At similar conditions, the oil retained (oil saturation) within the micromodel was determined by Image J software as 28.51 after 0.05 wt RS SNF flooding and 23.73 after 0.1 wt RS SNF flooding. The oil trapped in the micromodel after rice straw nanosilica�SDS and commercial nanosilica�SDS solutions injections were comparable at 19.35 and 18.33 respectively. The displacement efficiency and microscopic sweep was much higher when the synergy of nanoparticles and 0.2 wt sodium dodecyl sulfate (SDS) solutions were injected into the micromodel due to the lowest oil-water IFT and contact angles achieved by SiO2/SDS solutions. The SiO2/SDS fluid front propagated uniformly and in piston-like movement pattern, suggesting that the impact of viscous force over capillary oil retention forces was significantly higher. During nanofluids flooding, uniform invasion of the displacing fluid was observed at the onset of fluid injection, the nanofluid become thicker whereas the oil become thinner with the advancement of the displacing front. However, fingering of the displacing fluid front was noticed with time, resulting in progression of displacement fronts with dendritic and dispersive patterns. © 2022 Elsevier B.V. 2023 Article NonPeerReviewed Yekeen, N. and Salampessy, S.N. and Abu Bakar, A.H. and Ali, M. and Okunade, O.A. and Musa, S.A. and Bavoh, C.B. (2023) Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles. Journal of Petroleum Science and Engineering, 221. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143742961&doi=10.1016%2fj.petrol.2022.111292&partnerID=40&md5=4f478c7d2c028cb12e67da2e95d9a9b2 10.1016/j.petrol.2022.111292 10.1016/j.petrol.2022.111292 10.1016/j.petrol.2022.111292 |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
There is increasing interest in synthesis of silicon dioxide (SiO2) nanoparticles from agricultural biomass waste because the process is cost-efficient and eco-friendly. However, the application of rice straw SiO2 nanoparticles as enhanced oil recovery (EOR) agents have not been examined in detail. Moreover, the pore-scale mechanisms governing the mobilization and displacement of resident oil during rice straw silica nanofluids (RS SNF) flooding is rarely reported in literature. In this study, SiO2 nanoparticles (nanosilica) were synthesized from rice straw and characterized. Oil-water interfacial tension (IFT) and contact angles were measured to assess the performance of RS SNF as EOR agents. Pore-scale visualization experiments were conducted using 2-dimensional micromodel to identify the prevailing EOR mechanisms of RS SNF flooding. Significant reduction in oil-water IFT and contact angles were obtained in presence of RS SNF. These results were comparable to the performance of commercial silica nanofluids, suggesting that RS SNF could be utilized as favourable substitute to commercial SNF. The ideal rice straw nanosilica concentration for achieving optimum residual oil mobilization and microscopic sweep was identified as 0.1 wt from pore-scale visualization experiments. At similar conditions, the oil retained (oil saturation) within the micromodel was determined by Image J software as 28.51 after 0.05 wt RS SNF flooding and 23.73 after 0.1 wt RS SNF flooding. The oil trapped in the micromodel after rice straw nanosilica�SDS and commercial nanosilica�SDS solutions injections were comparable at 19.35 and 18.33 respectively. The displacement efficiency and microscopic sweep was much higher when the synergy of nanoparticles and 0.2 wt sodium dodecyl sulfate (SDS) solutions were injected into the micromodel due to the lowest oil-water IFT and contact angles achieved by SiO2/SDS solutions. The SiO2/SDS fluid front propagated uniformly and in piston-like movement pattern, suggesting that the impact of viscous force over capillary oil retention forces was significantly higher. During nanofluids flooding, uniform invasion of the displacing fluid was observed at the onset of fluid injection, the nanofluid become thicker whereas the oil become thinner with the advancement of the displacing front. However, fingering of the displacing fluid front was noticed with time, resulting in progression of displacement fronts with dendritic and dispersive patterns. © 2022 Elsevier B.V. |
format |
Article |
author |
Yekeen, N. Salampessy, S.N. Abu Bakar, A.H. Ali, M. Okunade, O.A. Musa, S.A. Bavoh, C.B. |
spellingShingle |
Yekeen, N. Salampessy, S.N. Abu Bakar, A.H. Ali, M. Okunade, O.A. Musa, S.A. Bavoh, C.B. Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
author_facet |
Yekeen, N. Salampessy, S.N. Abu Bakar, A.H. Ali, M. Okunade, O.A. Musa, S.A. Bavoh, C.B. |
author_sort |
Yekeen, N. |
title |
Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
title_short |
Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
title_full |
Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
title_fullStr |
Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
title_full_unstemmed |
Synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
title_sort |
synthesis and pore-scale visualization studies of enhanced oil recovery mechanisms of rice straw silica nanoparticles |
publishDate |
2023 |
url |
http://scholars.utp.edu.my/id/eprint/34133/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143742961&doi=10.1016%2fj.petrol.2022.111292&partnerID=40&md5=4f478c7d2c028cb12e67da2e95d9a9b2 |
_version_ |
1754532131642540032 |