Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling

A vehicle exposed to flooding may lose its stability and wash away resulting in potential injuries and fatalities. Traffic disruption, infrastructure damage, and economic losses are also additional effects of the washed vehicles. Therefore, understanding the responses of passenger vehicles during fl...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Qadami, E.H.H., Razi, M.A.M., Damanik, W.S., Mustaffa, Z., Martinez-Gomariz, E.
Format: Article
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37364/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170397682&doi=10.3390%2fsu151713262&partnerID=40&md5=43d382a1c01145b7198460552081bcd5
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id oai:scholars.utp.edu.my:37364
record_format eprints
spelling oai:scholars.utp.edu.my:373642023-10-04T11:25:50Z http://scholars.utp.edu.my/id/eprint/37364/ Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling Al-Qadami, E.H.H. Razi, M.A.M. Damanik, W.S. Mustaffa, Z. Martinez-Gomariz, E. A vehicle exposed to flooding may lose its stability and wash away resulting in potential injuries and fatalities. Traffic disruption, infrastructure damage, and economic losses are also additional effects of the washed vehicles. Therefore, understanding the responses of passenger vehicles during flood events is of the utmost importance to reduce flood risks and develop accurate safety guidelines. Previously, flooded vehicle stability was investigated experimentally, theoretically, and numerically. However, numerical investigations are insufficient, of which only a few studies have been published since 1967. Furthermore, coupled motion simulations have not been employed to investigate the hydrodynamic forces on flooded vehicles. In this paper, a numerical framework was proposed to assess the response of a full-scale medium-size passenger vehicle exposed to floodwaters through three-dimensional computational fluid dynamic modelling. The vehicle was simulated under subcritical and supercritical flows with the Froude number ranging between 0.09 and 2.46. The results showed that the vehicle experienced the floating instability mode once the flow depth reached 0.38 m, while the sliding instability mode was observed once the (Formula presented.) threshold function exceeded 0.36 m2/s. In terms of hydrodynamic forces, it was noticed that the drag force decreased with the increment of the Froude number and flow velocity. On the other hand, the fraction and buoyancy forces are mainly governed by the flow depth at the vehicle vicinity. The drag coefficient was noticed to be less than 1 for supercritical flows and more than 1 for subcritical flows. The numerical results obtained through the framework introduced in this study demonstrate favorable agreement with three different previously published experimental outcomes. © 2023 by the authors. Multidisciplinary Digital Publishing Institute (MDPI) 2023 Article NonPeerReviewed Al-Qadami, E.H.H. and Razi, M.A.M. and Damanik, W.S. and Mustaffa, Z. and Martinez-Gomariz, E. (2023) Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling. Sustainability (Switzerland), 15 (17). ISSN 20711050 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170397682&doi=10.3390%2fsu151713262&partnerID=40&md5=43d382a1c01145b7198460552081bcd5 10.3390/su151713262 10.3390/su151713262 10.3390/su151713262
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description A vehicle exposed to flooding may lose its stability and wash away resulting in potential injuries and fatalities. Traffic disruption, infrastructure damage, and economic losses are also additional effects of the washed vehicles. Therefore, understanding the responses of passenger vehicles during flood events is of the utmost importance to reduce flood risks and develop accurate safety guidelines. Previously, flooded vehicle stability was investigated experimentally, theoretically, and numerically. However, numerical investigations are insufficient, of which only a few studies have been published since 1967. Furthermore, coupled motion simulations have not been employed to investigate the hydrodynamic forces on flooded vehicles. In this paper, a numerical framework was proposed to assess the response of a full-scale medium-size passenger vehicle exposed to floodwaters through three-dimensional computational fluid dynamic modelling. The vehicle was simulated under subcritical and supercritical flows with the Froude number ranging between 0.09 and 2.46. The results showed that the vehicle experienced the floating instability mode once the flow depth reached 0.38 m, while the sliding instability mode was observed once the (Formula presented.) threshold function exceeded 0.36 m2/s. In terms of hydrodynamic forces, it was noticed that the drag force decreased with the increment of the Froude number and flow velocity. On the other hand, the fraction and buoyancy forces are mainly governed by the flow depth at the vehicle vicinity. The drag coefficient was noticed to be less than 1 for supercritical flows and more than 1 for subcritical flows. The numerical results obtained through the framework introduced in this study demonstrate favorable agreement with three different previously published experimental outcomes. © 2023 by the authors.
format Article
author Al-Qadami, E.H.H.
Razi, M.A.M.
Damanik, W.S.
Mustaffa, Z.
Martinez-Gomariz, E.
spellingShingle Al-Qadami, E.H.H.
Razi, M.A.M.
Damanik, W.S.
Mustaffa, Z.
Martinez-Gomariz, E.
Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
author_facet Al-Qadami, E.H.H.
Razi, M.A.M.
Damanik, W.S.
Mustaffa, Z.
Martinez-Gomariz, E.
author_sort Al-Qadami, E.H.H.
title Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
title_short Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
title_full Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
title_fullStr Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
title_full_unstemmed Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling
title_sort understanding the stability of passenger vehicles exposed to water flows through 3d cfd modelling
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37364/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170397682&doi=10.3390%2fsu151713262&partnerID=40&md5=43d382a1c01145b7198460552081bcd5
_version_ 1779441371621359616