Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine

This study presents a comprehensive analysis of the impact of variable inlet guide vanes and physical faults on the performance of a three-shaft gas turbine engine operating at full load. By utilizing the input data provided by the engine manufacturer, the performance models for both the design poin...

Full description

Saved in:
Bibliographic Details
Main Authors: Salilew, W.M., Gilani, S.I., Lemma, T.A., Fentaye, A.D., Kyprianidis, K.G.
Format: Article
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37428/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169109002&doi=10.3390%2fmachines11080789&partnerID=40&md5=94b104be72a6ac45844e9a133af758f8
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id oai:scholars.utp.edu.my:37428
record_format eprints
spelling oai:scholars.utp.edu.my:374282023-10-04T12:43:54Z http://scholars.utp.edu.my/id/eprint/37428/ Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine Salilew, W.M. Gilani, S.I. Lemma, T.A. Fentaye, A.D. Kyprianidis, K.G. This study presents a comprehensive analysis of the impact of variable inlet guide vanes and physical faults on the performance of a three-shaft gas turbine engine operating at full load. By utilizing the input data provided by the engine manufacturer, the performance models for both the design point and off-design scenarios have been developed. To ensure the accuracy of our models, validation was conducted using the manufacturer�s data. Once the models were successfully validated, various degradation conditions, such as variable inlet guide vane drift, fouling, and erosion, were simulated. Three scenarios that cause gas turbine degradation have been considered and simulated: First, how would the variable inlet guide vane drift affect the gas turbine performance? Second, how would the combined effect of fouling and variable inlet guide vane drift cause the degradation of the engine performance? Third, how would the combined effect of erosion and variable inlet guide vane drift cause the degradation of the engine performance? The results revealed that up-VIGV drift, which is combined fouling and erosion, shows a small deviation because of offsetting the isentropic efficiency drop caused by fouling and erosion. It is clearly observed that fouling affects more upstream components, whereas erosion affects more downstream components. Furthermore, the deviation of performance and output parameters due to the combined faults has been discussed. © 2023 by the authors. Multidisciplinary Digital Publishing Institute (MDPI) 2023 Article NonPeerReviewed Salilew, W.M. and Gilani, S.I. and Lemma, T.A. and Fentaye, A.D. and Kyprianidis, K.G. (2023) Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine. Machines, 11 (8). ISSN 20751702 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169109002&doi=10.3390%2fmachines11080789&partnerID=40&md5=94b104be72a6ac45844e9a133af758f8 10.3390/machines11080789 10.3390/machines11080789 10.3390/machines11080789
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description This study presents a comprehensive analysis of the impact of variable inlet guide vanes and physical faults on the performance of a three-shaft gas turbine engine operating at full load. By utilizing the input data provided by the engine manufacturer, the performance models for both the design point and off-design scenarios have been developed. To ensure the accuracy of our models, validation was conducted using the manufacturer�s data. Once the models were successfully validated, various degradation conditions, such as variable inlet guide vane drift, fouling, and erosion, were simulated. Three scenarios that cause gas turbine degradation have been considered and simulated: First, how would the variable inlet guide vane drift affect the gas turbine performance? Second, how would the combined effect of fouling and variable inlet guide vane drift cause the degradation of the engine performance? Third, how would the combined effect of erosion and variable inlet guide vane drift cause the degradation of the engine performance? The results revealed that up-VIGV drift, which is combined fouling and erosion, shows a small deviation because of offsetting the isentropic efficiency drop caused by fouling and erosion. It is clearly observed that fouling affects more upstream components, whereas erosion affects more downstream components. Furthermore, the deviation of performance and output parameters due to the combined faults has been discussed. © 2023 by the authors.
format Article
author Salilew, W.M.
Gilani, S.I.
Lemma, T.A.
Fentaye, A.D.
Kyprianidis, K.G.
spellingShingle Salilew, W.M.
Gilani, S.I.
Lemma, T.A.
Fentaye, A.D.
Kyprianidis, K.G.
Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
author_facet Salilew, W.M.
Gilani, S.I.
Lemma, T.A.
Fentaye, A.D.
Kyprianidis, K.G.
author_sort Salilew, W.M.
title Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
title_short Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
title_full Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
title_fullStr Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
title_full_unstemmed Synergistic Effect of Physical Faults and Variable Inlet Guide Vane Drift on Gas Turbine Engine
title_sort synergistic effect of physical faults and variable inlet guide vane drift on gas turbine engine
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37428/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169109002&doi=10.3390%2fmachines11080789&partnerID=40&md5=94b104be72a6ac45844e9a133af758f8
_version_ 1779441381502091264