Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction

Concrete is a worldwide construction material, but it has inherent faults, such as a low tensile strength, when not reinforced with steel or other forms of reinforcement. Various innovative materials are being incorporated into concrete to minimise its drawbacks while concurrently improving its depe...

Full description

Saved in:
Bibliographic Details
Main Authors: Tahir, H., Khan, M.B., Shafiq, N., Radu, D., Nyarko, M.H., Waqar, A., Almujibah, H.R., Benjeddou, O.
Format: Article
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37492/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166586085&doi=10.3390%2fsu151411147&partnerID=40&md5=2e6d9beccf3c8685aeb1fd3f47d3b4b5
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id oai:scholars.utp.edu.my:37492
record_format eprints
spelling oai:scholars.utp.edu.my:374922023-10-04T13:19:36Z http://scholars.utp.edu.my/id/eprint/37492/ Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction Tahir, H. Khan, M.B. Shafiq, N. Radu, D. Nyarko, M.H. Waqar, A. Almujibah, H.R. Benjeddou, O. Concrete is a worldwide construction material, but it has inherent faults, such as a low tensile strength, when not reinforced with steel or other forms of reinforcement. Various innovative materials are being incorporated into concrete to minimise its drawbacks while concurrently improving its dependability and sustainability. This study addresses the research gap by exploring and enhancing the utilisation of glass fibre (GF) concerning its mechanical properties and reduction of embodied carbon. The most significant advantage of incorporating GF into concrete is its capacity to reduce the obstruction ratio, forming clusters, and subsequent material solidification. The study involved experiments wherein GF was incorporated into concrete in varying proportions of 0, 0.5, 0.75, 1, 1.25, 1.50, 1.75, and 2 by weight. Mechanical tests and tests for durability were conducted, and Embodied carbon (EC) with eco-strength efficiency was also evaluated to assess the material�s sustainability. The investigation found that the optimal percentage of GF to be used in concrete is 1.25 by weight, which gives the optimum results for concrete�s mechanical strength and UPV. Adding 1.25 GF to the material results in increases of 11.76, 17.63, 17.73, 5.72, and 62.5 in C.S, STS, F.S, MoE, and impact energy, respectively. Concrete blended with 1.25 of GF has the optimum value of UPV. The carbon footprint associated with concrete positively correlates with the proportion of GF in its composition. The optimisation of GF in concrete is carried out by utilising the response surface methodology (RSM); equations generated through RSM enable the computation of the effects of incorporating GF in concrete. © 2023 by the authors. Multidisciplinary Digital Publishing Institute (MDPI) 2023 Article NonPeerReviewed Tahir, H. and Khan, M.B. and Shafiq, N. and Radu, D. and Nyarko, M.H. and Waqar, A. and Almujibah, H.R. and Benjeddou, O. (2023) Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction. Sustainability (Switzerland), 15 (14). ISSN 20711050 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166586085&doi=10.3390%2fsu151411147&partnerID=40&md5=2e6d9beccf3c8685aeb1fd3f47d3b4b5 10.3390/su151411147 10.3390/su151411147 10.3390/su151411147
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Concrete is a worldwide construction material, but it has inherent faults, such as a low tensile strength, when not reinforced with steel or other forms of reinforcement. Various innovative materials are being incorporated into concrete to minimise its drawbacks while concurrently improving its dependability and sustainability. This study addresses the research gap by exploring and enhancing the utilisation of glass fibre (GF) concerning its mechanical properties and reduction of embodied carbon. The most significant advantage of incorporating GF into concrete is its capacity to reduce the obstruction ratio, forming clusters, and subsequent material solidification. The study involved experiments wherein GF was incorporated into concrete in varying proportions of 0, 0.5, 0.75, 1, 1.25, 1.50, 1.75, and 2 by weight. Mechanical tests and tests for durability were conducted, and Embodied carbon (EC) with eco-strength efficiency was also evaluated to assess the material�s sustainability. The investigation found that the optimal percentage of GF to be used in concrete is 1.25 by weight, which gives the optimum results for concrete�s mechanical strength and UPV. Adding 1.25 GF to the material results in increases of 11.76, 17.63, 17.73, 5.72, and 62.5 in C.S, STS, F.S, MoE, and impact energy, respectively. Concrete blended with 1.25 of GF has the optimum value of UPV. The carbon footprint associated with concrete positively correlates with the proportion of GF in its composition. The optimisation of GF in concrete is carried out by utilising the response surface methodology (RSM); equations generated through RSM enable the computation of the effects of incorporating GF in concrete. © 2023 by the authors.
format Article
author Tahir, H.
Khan, M.B.
Shafiq, N.
Radu, D.
Nyarko, M.H.
Waqar, A.
Almujibah, H.R.
Benjeddou, O.
spellingShingle Tahir, H.
Khan, M.B.
Shafiq, N.
Radu, D.
Nyarko, M.H.
Waqar, A.
Almujibah, H.R.
Benjeddou, O.
Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
author_facet Tahir, H.
Khan, M.B.
Shafiq, N.
Radu, D.
Nyarko, M.H.
Waqar, A.
Almujibah, H.R.
Benjeddou, O.
author_sort Tahir, H.
title Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
title_short Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
title_full Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
title_fullStr Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
title_full_unstemmed Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction
title_sort optimisation of mechanical characteristics of alkali-resistant glass fibre concrete towards sustainable construction
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37492/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166586085&doi=10.3390%2fsu151411147&partnerID=40&md5=2e6d9beccf3c8685aeb1fd3f47d3b4b5
_version_ 1779441391896625152