Managing the Energy Trilemma in the Philippines
Background The transition to an energy mix with lower carbon emissions is hampered by the existence of the so-called Energy Trilemma. The primary consequence is a trade-off between various objectives of energy policy, e.g., equity and sustainability. This conflict can lead to policy gridlock if poli...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2021
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/asog-pubs/201 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1203&context=asog-pubs |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
Summary: | Background
The transition to an energy mix with lower carbon emissions is hampered by the existence of the so-called Energy Trilemma. The primary consequence is a trade-off between various objectives of energy policy, e.g., equity and sustainability. This conflict can lead to policy gridlock if policymakers are unable to prioritize the goals. This paper proposes a framework and methodology to manage the trilemma by applying methods related to multi-criteria decision-making in order to assign weights to the various components of the trilemma. Results
Following the International Energy Agency (IEA), an expanded concept of energy security is adopted and translates to a version of the trilemma different from that of the World Energy Council. This study takes into account autarky, price, supply, and carbon emissions. The values of these variables are generated by a software called PLEXOS and are incorporated in a welfare function. Trade-offs and complementarities among the four variables are taken into account by the equations in the PLEXOS model. Meanwhile, weights for each of the components of the trilemma are obtained using the Analytical Hierarchy Process. The experts interviewed for this exercise are considered hypothetical heads of the Philippine Department of Energy (DOE). Conclusion
Two scenarios were compared: a market-based simulation and one where a carbon-tax was imposed. As expected, the carbon-tax leads to a fall in the level of carbon emissions but a rise in the cost of electricity. Because the demand for electricity has a higher price elasticity among lower income classes, the carbon-tax will worsen equity. Attempting to resolve the conflict among the goals of energy policy is difficult leading to a possible gridlock. Policy options can, however, be ranked using the values generated by the welfare function. The ranking clearly depends on the preference or priorities of the hypothetical head of the DOE but at least a decision could be reached. In this manner, trade-offs are measured and the trilemma can be managed even if it is not resolved. |
---|