Streamlining machine learning in mobile devices for remote sensing

Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications,...

Full description

Saved in:
Bibliographic Details
Main Authors: Estuar, Ma. Regina Justina E, Coronel, Andrei D, Abu, Patricia Angela R, Victorino, John Noel C, Garcia, Kyle Kristopher P, Dela Cruz, Bon Lemuel T, Torrijos, Jose Emmanuel, Lim, Hadrian Paulo M
Format: text
Published: Archīum Ateneo 2017
Subjects:
Online Access:https://archium.ateneo.edu/discs-faculty-pubs/23
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/2279061/Streamlining-machine-learning-in-mobile-devices-for-remote-sensing/10.1117/12.2279061.short?SSO=1
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
id ph-ateneo-arc.discs-faculty-pubs-1022
record_format eprints
spelling ph-ateneo-arc.discs-faculty-pubs-10222020-02-22T02:51:27Z Streamlining machine learning in mobile devices for remote sensing Estuar, Ma. Regina Justina E Coronel, Andrei D Abu, Patricia Angela R Victorino, John Noel C Garcia, Kyle Kristopher P Dela Cruz, Bon Lemuel T Torrijos, Jose Emmanuel Lim, Hadrian Paulo M Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in mobile devices limit the computational capabilities, making model development on the phone restricted and challenging. This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction techniques were applied to all images. Initial findings show no significant differences among the different feature extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as having a better accuracy than SVM or Naive-Bayes. 2017-01-01T08:00:00Z text https://archium.ateneo.edu/discs-faculty-pubs/23 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/2279061/Streamlining-machine-learning-in-mobile-devices-for-remote-sensing/10.1117/12.2279061.short?SSO=1 Department of Information Systems & Computer Science Faculty Publications Archīum Ateneo Computer Sciences Databases and Information Systems Educational Technology
institution Ateneo De Manila University
building Ateneo De Manila University Library
continent Asia
country Philippines
Philippines
content_provider Ateneo De Manila University Library
collection archium.Ateneo Institutional Repository
topic Computer Sciences
Databases and Information Systems
Educational Technology
spellingShingle Computer Sciences
Databases and Information Systems
Educational Technology
Estuar, Ma. Regina Justina E
Coronel, Andrei D
Abu, Patricia Angela R
Victorino, John Noel C
Garcia, Kyle Kristopher P
Dela Cruz, Bon Lemuel T
Torrijos, Jose Emmanuel
Lim, Hadrian Paulo M
Streamlining machine learning in mobile devices for remote sensing
description Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in mobile devices limit the computational capabilities, making model development on the phone restricted and challenging. This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction techniques were applied to all images. Initial findings show no significant differences among the different feature extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as having a better accuracy than SVM or Naive-Bayes.
format text
author Estuar, Ma. Regina Justina E
Coronel, Andrei D
Abu, Patricia Angela R
Victorino, John Noel C
Garcia, Kyle Kristopher P
Dela Cruz, Bon Lemuel T
Torrijos, Jose Emmanuel
Lim, Hadrian Paulo M
author_facet Estuar, Ma. Regina Justina E
Coronel, Andrei D
Abu, Patricia Angela R
Victorino, John Noel C
Garcia, Kyle Kristopher P
Dela Cruz, Bon Lemuel T
Torrijos, Jose Emmanuel
Lim, Hadrian Paulo M
author_sort Estuar, Ma. Regina Justina E
title Streamlining machine learning in mobile devices for remote sensing
title_short Streamlining machine learning in mobile devices for remote sensing
title_full Streamlining machine learning in mobile devices for remote sensing
title_fullStr Streamlining machine learning in mobile devices for remote sensing
title_full_unstemmed Streamlining machine learning in mobile devices for remote sensing
title_sort streamlining machine learning in mobile devices for remote sensing
publisher Archīum Ateneo
publishDate 2017
url https://archium.ateneo.edu/discs-faculty-pubs/23
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/2279061/Streamlining-machine-learning-in-mobile-devices-for-remote-sensing/10.1117/12.2279061.short?SSO=1
_version_ 1728621325878034432