A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System

This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition de...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Liang-Hung, Zhang, Wei, Guan, Ming-Hui, Jiang, Su-Ya, Fan, Ming-Hui, Abu, Patricia Angela R, Chen, Chiung-An, Chen, Shih-Lun
Format: text
Published: Archīum Ateneo 2019
Subjects:
Online Access:https://archium.ateneo.edu/discs-faculty-pubs/69
https://www.mdpi.com/1424-8220/19/22/4996
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
id ph-ateneo-arc.discs-faculty-pubs-1068
record_format eprints
spelling ph-ateneo-arc.discs-faculty-pubs-10682020-04-17T07:09:42Z A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System Wang, Liang-Hung Zhang, Wei Guan, Ming-Hui Jiang, Su-Ya Fan, Ming-Hui Abu, Patricia Angela R Chen, Chiung-An Chen, Shih-Lun This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition device. Compared with the traditional 12-lead wired ECG detection instrument, which limits patient mobility and needs medical staff assistance to acquire the ECG signal, the proposed vest-type ECG acquisition system is very comfortable and easy to use by patients themselves anytime and anywhere, especially for the elderly. The proposed study incorporates three methods to reduce the power consumption of the system by optimizing the micro control unit (MCU) working mode, adjusting the radio frequency (RF) parameters, and compressing the transmitted data. In addition, Huffman lossless coding is used to compress the transmitted data in order to increase the sampling rate of the acquisition system. It makes the whole system operate continuously for a long period of time and acquire abundant ECG information, which is helpful for clinical diagnosis. Finally, a series of tests were performed on the designed wearable ECG device. The results have demonstrated that the multi-lead wearable ECG device can collect, process, and transmit ECG data through Bluetooth technology. The ECG waveforms collected by the device are clear, complete, and can be displayed in real-time on a mobile phone. The sampling rate of the proposed wearable sensor system is 250 Hz per lead, which is dependent on the lossless compression scheme. The device achieves a compression ratio of 2.31. By implementing a low power design on the device, the resulting overall operational current of the device is reduced by 37.6% to 9.87 mA under a supply voltage of 2.1 V. The proposed vest-type multi-lead ECG acquisition device can be easily employed by medical staff for clinical diagnosis and is a suitable wearable device in monitoring and nursing the off-ward patients. 2019-11-16T08:00:00Z text https://archium.ateneo.edu/discs-faculty-pubs/69 https://www.mdpi.com/1424-8220/19/22/4996 Department of Information Systems & Computer Science Faculty Publications Archīum Ateneo multi-lead wearable electrocardiogram (ECG) sensor system Bluetooth Huffman coding low power consumption Computer Sciences
institution Ateneo De Manila University
building Ateneo De Manila University Library
continent Asia
country Philippines
Philippines
content_provider Ateneo De Manila University Library
collection archium.Ateneo Institutional Repository
topic multi-lead
wearable electrocardiogram (ECG) sensor system
Bluetooth
Huffman coding
low power consumption
Computer Sciences
spellingShingle multi-lead
wearable electrocardiogram (ECG) sensor system
Bluetooth
Huffman coding
low power consumption
Computer Sciences
Wang, Liang-Hung
Zhang, Wei
Guan, Ming-Hui
Jiang, Su-Ya
Fan, Ming-Hui
Abu, Patricia Angela R
Chen, Chiung-An
Chen, Shih-Lun
A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
description This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition device. Compared with the traditional 12-lead wired ECG detection instrument, which limits patient mobility and needs medical staff assistance to acquire the ECG signal, the proposed vest-type ECG acquisition system is very comfortable and easy to use by patients themselves anytime and anywhere, especially for the elderly. The proposed study incorporates three methods to reduce the power consumption of the system by optimizing the micro control unit (MCU) working mode, adjusting the radio frequency (RF) parameters, and compressing the transmitted data. In addition, Huffman lossless coding is used to compress the transmitted data in order to increase the sampling rate of the acquisition system. It makes the whole system operate continuously for a long period of time and acquire abundant ECG information, which is helpful for clinical diagnosis. Finally, a series of tests were performed on the designed wearable ECG device. The results have demonstrated that the multi-lead wearable ECG device can collect, process, and transmit ECG data through Bluetooth technology. The ECG waveforms collected by the device are clear, complete, and can be displayed in real-time on a mobile phone. The sampling rate of the proposed wearable sensor system is 250 Hz per lead, which is dependent on the lossless compression scheme. The device achieves a compression ratio of 2.31. By implementing a low power design on the device, the resulting overall operational current of the device is reduced by 37.6% to 9.87 mA under a supply voltage of 2.1 V. The proposed vest-type multi-lead ECG acquisition device can be easily employed by medical staff for clinical diagnosis and is a suitable wearable device in monitoring and nursing the off-ward patients.
format text
author Wang, Liang-Hung
Zhang, Wei
Guan, Ming-Hui
Jiang, Su-Ya
Fan, Ming-Hui
Abu, Patricia Angela R
Chen, Chiung-An
Chen, Shih-Lun
author_facet Wang, Liang-Hung
Zhang, Wei
Guan, Ming-Hui
Jiang, Su-Ya
Fan, Ming-Hui
Abu, Patricia Angela R
Chen, Chiung-An
Chen, Shih-Lun
author_sort Wang, Liang-Hung
title A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
title_short A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
title_full A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
title_fullStr A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
title_full_unstemmed A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
title_sort low-power high-data-transmission multi-lead ecg acquisition sensor system
publisher Archīum Ateneo
publishDate 2019
url https://archium.ateneo.edu/discs-faculty-pubs/69
https://www.mdpi.com/1424-8220/19/22/4996
_version_ 1722366502337773568