k-d Tree-Segmented Block Truncation Coding for Image Compression
Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is commonly used because of its simplicity and low computational complexity. The Q...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2016
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/discs-faculty-pubs/87 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1086&context=discs-faculty-pubs |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.discs-faculty-pubs-1086 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.discs-faculty-pubs-10862020-05-07T09:52:02Z k-d Tree-Segmented Block Truncation Coding for Image Compression Fernandez, Proceso L, Jr Daga, Ryan Rey M Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is commonly used because of its simplicity and low computational complexity. The Quadtree-segmented BTC (QTS-BTC), which utilizes a dynamic hierarchical segmentation technique, is among the most efficient in the BTC class. In this study, we propose a new BTC variant that introduces two ideas: (1) the use of a k-d tree for segmentation and (2) the use of a Mean Squared Error (MSE) threshold for dynamically determining the granularity of the blocks. We refer to this new BTC variant as the k-d Tree Segmented BTC (KTS-BTC), and we test this against some of the existing BTC variants by running the algorithms on a standard image compression dataset. The results show that the proposed variant yields low bit rates of the compressed images, even outperforming the state-of-the-art QTS-BTC, without a significant reduction in image quality as measured using the Peak Signal-to-Noise Ratio (PSNR). The utilization of k-d tree for image segmentation is further shown to have more impact than that of employing the MSE thresholding scheme as a block activity classifier. 2016-01-01T08:00:00Z text application/pdf https://archium.ateneo.edu/discs-faculty-pubs/87 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1086&context=discs-faculty-pubs Department of Information Systems & Computer Science Faculty Publications Archīum Ateneo Computer Sciences Theory and Algorithms |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
country |
Philippines |
collection |
archium.Ateneo Institutional Repository |
topic |
Computer Sciences Theory and Algorithms |
spellingShingle |
Computer Sciences Theory and Algorithms Fernandez, Proceso L, Jr Daga, Ryan Rey M k-d Tree-Segmented Block Truncation Coding for Image Compression |
description |
Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is commonly used because of its simplicity and low computational complexity. The Quadtree-segmented BTC (QTS-BTC), which utilizes a dynamic hierarchical segmentation technique, is among the most efficient in the BTC class. In this study, we propose a new BTC variant that introduces two ideas: (1) the use of a k-d tree for segmentation and (2) the use of a Mean Squared Error (MSE) threshold for dynamically determining the granularity of the blocks. We refer to this new BTC variant as the k-d Tree Segmented BTC (KTS-BTC), and we test this against some of the existing BTC variants by running the algorithms on a standard image compression dataset. The results show that the proposed variant yields low bit rates of the compressed images, even outperforming the state-of-the-art QTS-BTC, without a significant reduction in image quality as measured using the Peak Signal-to-Noise Ratio (PSNR). The utilization of k-d tree for image segmentation is further shown to have more impact than that of employing the MSE thresholding scheme as a block activity classifier. |
format |
text |
author |
Fernandez, Proceso L, Jr Daga, Ryan Rey M |
author_facet |
Fernandez, Proceso L, Jr Daga, Ryan Rey M |
author_sort |
Fernandez, Proceso L, Jr |
title |
k-d Tree-Segmented Block Truncation Coding for Image Compression |
title_short |
k-d Tree-Segmented Block Truncation Coding for Image Compression |
title_full |
k-d Tree-Segmented Block Truncation Coding for Image Compression |
title_fullStr |
k-d Tree-Segmented Block Truncation Coding for Image Compression |
title_full_unstemmed |
k-d Tree-Segmented Block Truncation Coding for Image Compression |
title_sort |
k-d tree-segmented block truncation coding for image compression |
publisher |
Archīum Ateneo |
publishDate |
2016 |
url |
https://archium.ateneo.edu/discs-faculty-pubs/87 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1086&context=discs-faculty-pubs |
_version_ |
1681506593779220480 |