Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
Training an artificial neural network for handwriting classification requires a sufficiently sized annotated dataset in order to avoid overfitting. In the absence of sufficient instances, data augmentation techniques are normally considered. In this paper, we propose the troika generative adversaria...
Saved in:
Main Authors: | Milan, Joe Anthony M, Fernandez, Proceso L, Jr |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2020
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/discs-faculty-pubs/208 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1207&context=discs-faculty-pubs |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
由: Milan, Joe Anthony M, et al.
出版: (2020) -
Troika GAN vs Decoupled GAN: An Investigation on the Impact of Subnetwork Weight Sharing for Data Augmentation
由: Milan, Joe Anthony M, et al.
出版: (2020) -
Augmenting image data using generative adversarial networks (GAN)
由: Liu, Xinchi
出版: (2024) -
Be a cartoonist : editing anime images using generative adversarial network
由: Koh, Tong Liang
出版: (2022) -
Multi-stage generative adversarial networks for generating pavement crack images
由: Han, Chengjia, et al.
出版: (2024)