Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values
Image classification in remote sensing is defined by categorizing image pixels or raw data sensed by satellites into a distinct set of labels. In this paper, an improved technique for classifying pixels from satellite images is proposed. The technique makes use of the median value of the pixels in t...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2020
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/discs-faculty-pubs/227 https://ieeexplore.ieee.org/document/9182359 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.discs-faculty-pubs-1237 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.discs-faculty-pubs-12372022-01-10T09:27:00Z Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values Magpantay, Abraham T Fernandez, Proceso L, Jr Image classification in remote sensing is defined by categorizing image pixels or raw data sensed by satellites into a distinct set of labels. In this paper, an improved technique for classifying pixels from satellite images is proposed. The technique makes use of the median value of the pixels in the rectangular neighborhood centered at the given pixel to be classified. A scoring system was developed that compares this median value in relation to the expected median values for each of the different classes. The proposed method was tested on Landsat-8 Operational Land Imager (OLI) bands 1 to 7 images and three index images-Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI). The experimental results showed an overall accuracy of 94%, a remarkable improvement from the 84% accuracy of the previous work that uses a distance-based classifier. The obtained results indicate that the proposed method can be a better alternative way to classify images in remote sensing. 2020-01-01T08:00:00Z text https://archium.ateneo.edu/discs-faculty-pubs/227 https://ieeexplore.ieee.org/document/9182359 Department of Information Systems & Computer Science Faculty Publications Archīum Ateneo Remote sensing Earth Artificial satellites Indexes Vegetation mapping Satellites Image classification Remote Sensing Landsat- 8 OLI Normalized Difference Vegetation Index Normalized Difference Built-up Index Normalized Difference Water Index Computer Sciences |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
Ateneo De Manila University Library |
collection |
archium.Ateneo Institutional Repository |
topic |
Remote sensing Earth Artificial satellites Indexes Vegetation mapping Satellites Image classification Remote Sensing Landsat- 8 OLI Normalized Difference Vegetation Index Normalized Difference Built-up Index Normalized Difference Water Index Computer Sciences |
spellingShingle |
Remote sensing Earth Artificial satellites Indexes Vegetation mapping Satellites Image classification Remote Sensing Landsat- 8 OLI Normalized Difference Vegetation Index Normalized Difference Built-up Index Normalized Difference Water Index Computer Sciences Magpantay, Abraham T Fernandez, Proceso L, Jr Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
description |
Image classification in remote sensing is defined by categorizing image pixels or raw data sensed by satellites into a distinct set of labels. In this paper, an improved technique for classifying pixels from satellite images is proposed. The technique makes use of the median value of the pixels in the rectangular neighborhood centered at the given pixel to be classified. A scoring system was developed that compares this median value in relation to the expected median values for each of the different classes. The proposed method was tested on Landsat-8 Operational Land Imager (OLI) bands 1 to 7 images and three index images-Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI). The experimental results showed an overall accuracy of 94%, a remarkable improvement from the 84% accuracy of the previous work that uses a distance-based classifier. The obtained results indicate that the proposed method can be a better alternative way to classify images in remote sensing. |
format |
text |
author |
Magpantay, Abraham T Fernandez, Proceso L, Jr |
author_facet |
Magpantay, Abraham T Fernandez, Proceso L, Jr |
author_sort |
Magpantay, Abraham T |
title |
Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
title_short |
Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
title_full |
Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
title_fullStr |
Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
title_full_unstemmed |
Improving the Classification of Landsat-8 OLI Images using Neighborhood Median Pixel Values |
title_sort |
improving the classification of landsat-8 oli images using neighborhood median pixel values |
publisher |
Archīum Ateneo |
publishDate |
2020 |
url |
https://archium.ateneo.edu/discs-faculty-pubs/227 https://ieeexplore.ieee.org/document/9182359 |
_version_ |
1722366525266984960 |