Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph
Periodontitis is a high prevalence dental disease caused by bacterial infection of the bone that surrounds the tooth. Early detection and precision treatment can prevent more severe symptoms such as tooth loss. Traditionally, periodontal disease is identified and labeled manually by dental professio...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2024
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/discs-faculty-pubs/405 https://archium.ateneo.edu/context/discs-faculty-pubs/article/1405/viewcontent/Detection_of_Various_Dental_Conditions_on_Dental_Panoramic_Radiography_Using_Faster_R_CNN.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.discs-faculty-pubs-1405 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.discs-faculty-pubs-14052024-02-21T05:48:49Z Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph Li, Kuo Chen Mao, Yi-Cheng Lin, Mu-Feng Li, Yi-Qian Chen, Chiung-An Chen, Tsung-Yi Abu, Patricia Angela R Periodontitis is a high prevalence dental disease caused by bacterial infection of the bone that surrounds the tooth. Early detection and precision treatment can prevent more severe symptoms such as tooth loss. Traditionally, periodontal disease is identified and labeled manually by dental professionals. The task requires expertise and extensive experience, and it is highly repetitive and time-consuming. The aim of this study is to explore the application of AI in the field of dental medicine. With the inherent learning capabilities, AI exhibits remarkable proficiency in processing extensive datasets and effectively managing repetitive tasks. This is particularly advantageous in professions demanding extensive experiential knowledge, such as dentistry. By harnessing AI, the potential arises to amplify process efficiency and velocity. In this study, bitewing radiographs are used as the image source, and there are two major steps to detect the dental symptoms including 1) tooth position identification; and 2) symptom identification. The study combines image enhancement techniques and tooth position identification using Gaussian filtering and adaptive binarization for data preprocessing, facilitated by the YOLOv4 model to precisely mark tooth positions. The subsequent step enhances symptom area visibility via contrast enhancement, utilizing a CNN model, particularly the AlexNet model, with significant improvements in caries recognition accuracy (92.85%) and restorations recognition accuracy (96.55%) compared to prior research. Moreover, the inclusion of periodontal disease symptoms achieves an accuracy of 91.13%. By harnessing deep learning techniques based on CNN models, this research enhances diagnostic precision, reduces errors, and increases efficiency for dentists, thereby providing meticulous and swift patient care. This innovation not only saves time but also has the potential for widespread implementation in remote and preventive medicine, aligning with the aspiration of universal health care accessibility. 2024-01-01T08:00:00Z text application/pdf https://archium.ateneo.edu/discs-faculty-pubs/405 https://archium.ateneo.edu/context/discs-faculty-pubs/article/1405/viewcontent/Detection_of_Various_Dental_Conditions_on_Dental_Panoramic_Radiography_Using_Faster_R_CNN.pdf Department of Information Systems & Computer Science Faculty Publications Archīum Ateneo Biomedical Biomedical Engineering and Bioengineering Computer Engineering Computer Sciences Electrical and Computer Engineering Engineering Medicine and Health Sciences Physical Sciences and Mathematics |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
Ateneo De Manila University Library |
collection |
archium.Ateneo Institutional Repository |
topic |
Biomedical Biomedical Engineering and Bioengineering Computer Engineering Computer Sciences Electrical and Computer Engineering Engineering Medicine and Health Sciences Physical Sciences and Mathematics |
spellingShingle |
Biomedical Biomedical Engineering and Bioengineering Computer Engineering Computer Sciences Electrical and Computer Engineering Engineering Medicine and Health Sciences Physical Sciences and Mathematics Li, Kuo Chen Mao, Yi-Cheng Lin, Mu-Feng Li, Yi-Qian Chen, Chiung-An Chen, Tsung-Yi Abu, Patricia Angela R Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
description |
Periodontitis is a high prevalence dental disease caused by bacterial infection of the bone that surrounds the tooth. Early detection and precision treatment can prevent more severe symptoms such as tooth loss. Traditionally, periodontal disease is identified and labeled manually by dental professionals. The task requires expertise and extensive experience, and it is highly repetitive and time-consuming. The aim of this study is to explore the application of AI in the field of dental medicine. With the inherent learning capabilities, AI exhibits remarkable proficiency in processing extensive datasets and effectively managing repetitive tasks. This is particularly advantageous in professions demanding extensive experiential knowledge, such as dentistry. By harnessing AI, the potential arises to amplify process efficiency and velocity. In this study, bitewing radiographs are used as the image source, and there are two major steps to detect the dental symptoms including 1) tooth position identification; and 2) symptom identification. The study combines image enhancement techniques and tooth position identification using Gaussian filtering and adaptive binarization for data preprocessing, facilitated by the YOLOv4 model to precisely mark tooth positions. The subsequent step enhances symptom area visibility via contrast enhancement, utilizing a CNN model, particularly the AlexNet model, with significant improvements in caries recognition accuracy (92.85%) and restorations recognition accuracy (96.55%) compared to prior research. Moreover, the inclusion of periodontal disease symptoms achieves an accuracy of 91.13%. By harnessing deep learning techniques based on CNN models, this research enhances diagnostic precision, reduces errors, and increases efficiency for dentists, thereby providing meticulous and swift patient care. This innovation not only saves time but also has the potential for widespread implementation in remote and preventive medicine, aligning with the aspiration of universal health care accessibility. |
format |
text |
author |
Li, Kuo Chen Mao, Yi-Cheng Lin, Mu-Feng Li, Yi-Qian Chen, Chiung-An Chen, Tsung-Yi Abu, Patricia Angela R |
author_facet |
Li, Kuo Chen Mao, Yi-Cheng Lin, Mu-Feng Li, Yi-Qian Chen, Chiung-An Chen, Tsung-Yi Abu, Patricia Angela R |
author_sort |
Li, Kuo Chen |
title |
Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
title_short |
Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
title_full |
Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
title_fullStr |
Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
title_full_unstemmed |
Detection of Tooth Position by YOLOv4 and Various Dental Problems Based on CNN With Bitewing Radiograph |
title_sort |
detection of tooth position by yolov4 and various dental problems based on cnn with bitewing radiograph |
publisher |
Archīum Ateneo |
publishDate |
2024 |
url |
https://archium.ateneo.edu/discs-faculty-pubs/405 https://archium.ateneo.edu/context/discs-faculty-pubs/article/1405/viewcontent/Detection_of_Various_Dental_Conditions_on_Dental_Panoramic_Radiography_Using_Faster_R_CNN.pdf |
_version_ |
1792202637504937984 |