On Integration-by-parts and the Itô Formula for Backwards Itô Integral
In this paper, we derive integration-by-parts for-mula using the generalized Riemann approach to stochastic calculus called the backwards Itô integral. Moreover, we use integration-by-parts formula to deduce the Itô formula for the backwards Itô integral.
Saved in:
Main Authors: | Cabral, Emmanuel A, Arcede, Jayrold |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2011
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/mathematics-faculty-pubs/9 https://www.researchgate.net/publication/264011137_On_Integration-by-parts_and_the_Ito_Formula_for_Backwards_Ito_Integral |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
An Equivalent Definition for the Backwards Ito Integral
由: Arcede, Jayrold, et al.
出版: (2011) -
Fundamental Theorem of Calculus for the Backwards Ito Integral
由: Arcede, Jayrold, et al.
出版: (2011) -
Fundamental Theorem of Calculus for Backwards Ito Integral
由: Arcede, Jayrold, et al.
出版: (2013) -
Itô-Henstock integral and Itô's formula for the operator-valued stochastic process
由: Labendia, Mhelmar A, et al.
出版: (2018) -
Generalized ITO integral and Henstock-Young integral
由: VARAYU BOONPOGKRONG
出版: (2010)