Computation of Square and Cube Roots of $p$-Adic Numbers via Newton-Raphson Method

The problem of finding square roots of p-adic integers in Zp, p =/= 2, has been a classic application of Hensel’s lemma. A recent development on this problem is the application and analysis of convergence of numerical methods in approximating p-adic numbers. For a p-adic number a, Zerzaihi, Kecies,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Nable, Job A, Ignacio, Paul Samuel, Addawe, Joel, Alangui, Wilfredo
格式: text
出版: Archīum Ateneo 2013
主題:
在線閱讀:https://archium.ateneo.edu/mathematics-faculty-pubs/13
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Ateneo De Manila University
實物特徵
總結:The problem of finding square roots of p-adic integers in Zp, p =/= 2, has been a classic application of Hensel’s lemma. A recent development on this problem is the application and analysis of convergence of numerical methods in approximating p-adic numbers. For a p-adic number a, Zerzaihi, Kecies, and Knapp (2010) introduced a fixedpoint method to find the square root of a in Qp. Zerzaihi and Kecies (2011) later extended this problem to finding the cube root of a using the secant method. In this paper, we compute for the square roots and cube roots of p-adic numbers in Qp, using the Newton-Raphson method. We present findings that confirm recent results on the square roots of p-adic numbers, and highlight the advantages of this method over the fixed point and secant methods. We also establish sufficient conditions for the convergence of this method, and determine the speed of its convergence. Finally, we determine how many iterations are needed to obtain a specified number of correct digits in the approximate.