The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n)
For a non-trivial connected graph G, let c:V(G)→N" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2016
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/mathematics-faculty-pubs/76 https://link.springer.com/chapter/10.1007/978-3-319-48532-4_19 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.mathematics-faculty-pubs-1075 |
---|---|
record_format |
eprints |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
Ateneo De Manila University Library |
collection |
archium.Ateneo Institutional Repository |
topic |
Neighbor-distinguishing coloring Sigma coloring Circulant graphs Other Mathematics |
spellingShingle |
Neighbor-distinguishing coloring Sigma coloring Circulant graphs Other Mathematics Ruiz, Mari-Jo P Luzon, Paul Adrian D Tolentino, Mark Anthony C The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
description |
For a non-trivial connected graph G, let c:V(G)→N" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">c:V(G)→Nc:V(G)→N be a vertex coloring of G. For each v∈V(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v∈V(G)v∈V(G), the color sum of v, denoted by σ(v)," role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(v),σ(v), is defined to be the sum of the colors of the vertices adjacent to v. If σ(u)≠σ(v)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(u)≠σ(v)σ(u)≠σ(v) for every two adjacent u,v∈V(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">u,v∈V(G)u,v∈V(G), then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of G is called its sigma chromatic number and is denoted by σ(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(G)σ(G). In this paper, we determine the sigma chromatic numbers of three families of circulant graphs: Cn(1,2)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Cn(1,2)Cn(1,2), Cn(1,3)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Cn(1,3)Cn(1,3), and C2n(1,n)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C2n(1,n)C2n(1,n). |
format |
text |
author |
Ruiz, Mari-Jo P Luzon, Paul Adrian D Tolentino, Mark Anthony C |
author_facet |
Ruiz, Mari-Jo P Luzon, Paul Adrian D Tolentino, Mark Anthony C |
author_sort |
Ruiz, Mari-Jo P |
title |
The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
title_short |
The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
title_full |
The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
title_fullStr |
The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
title_full_unstemmed |
The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) |
title_sort |
sigma chromatic number of the circulant graphs cn(1,2) , cn(1,3) , and c2n(1,n) |
publisher |
Archīum Ateneo |
publishDate |
2016 |
url |
https://archium.ateneo.edu/mathematics-faculty-pubs/76 https://link.springer.com/chapter/10.1007/978-3-319-48532-4_19 |
_version_ |
1728621330818924544 |
spelling |
ph-ateneo-arc.mathematics-faculty-pubs-10752020-06-01T03:49:27Z The Sigma Chromatic Number of the Circulant Graphs Cn(1,2) , Cn(1,3) , and C2n(1,n) Ruiz, Mari-Jo P Luzon, Paul Adrian D Tolentino, Mark Anthony C For a non-trivial connected graph G, let c:V(G)→N" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">c:V(G)→Nc:V(G)→N be a vertex coloring of G. For each v∈V(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v∈V(G)v∈V(G), the color sum of v, denoted by σ(v)," role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(v),σ(v), is defined to be the sum of the colors of the vertices adjacent to v. If σ(u)≠σ(v)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(u)≠σ(v)σ(u)≠σ(v) for every two adjacent u,v∈V(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">u,v∈V(G)u,v∈V(G), then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of G is called its sigma chromatic number and is denoted by σ(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">σ(G)σ(G). In this paper, we determine the sigma chromatic numbers of three families of circulant graphs: Cn(1,2)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Cn(1,2)Cn(1,2), Cn(1,3)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Cn(1,3)Cn(1,3), and C2n(1,n)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C2n(1,n)C2n(1,n). 2016-11-01T07:00:00Z text https://archium.ateneo.edu/mathematics-faculty-pubs/76 https://link.springer.com/chapter/10.1007/978-3-319-48532-4_19 Mathematics Faculty Publications Archīum Ateneo Neighbor-distinguishing coloring Sigma coloring Circulant graphs Other Mathematics |