Existence of independent [1, 2]-sets in caterpillars
Given a graph G, a subset S ⊆ V (G) is an independent [1, 2]-set if no two vertices in S are adjacent and for every vertex ν ∈ V (G)\S, 1 ≤ |N(ν) ∩ S| ≤ 2, that is, every vertex ν ∈ V (G)\S is adjacent to at least one but not more than two vertices in S. In this paper, we discuss the existence of in...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2016
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/mathematics-faculty-pubs/79 https://aip.scitation.org/doi/abs/10.1063/1.4940820 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
Summary: | Given a graph G, a subset S ⊆ V (G) is an independent [1, 2]-set if no two vertices in S are adjacent and for every vertex ν ∈ V (G)\S, 1 ≤ |N(ν) ∩ S| ≤ 2, that is, every vertex ν ∈ V (G)\S is adjacent to at least one but not more than two vertices in S. In this paper, we discuss the existence of independent [1, 2]-sets in a family of trees called caterpillars. |
---|