Semi-perfect colourings of hyperbolic tilings

If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilin...

Full description

Saved in:
Bibliographic Details
Main Authors: De Las Peñas, Ma. Louise Antonette N, Felix, Rene P, Gozo, Beaunonie R, Jr, Laigo, Glenn R
Format: text
Published: Archīum Ateneo 2011
Subjects:
Online Access:https://archium.ateneo.edu/mathematics-faculty-pubs/102
https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
id ph-ateneo-arc.mathematics-faculty-pubs-1101
record_format eprints
spelling ph-ateneo-arc.mathematics-faculty-pubs-11012022-03-18T00:22:00Z Semi-perfect colourings of hyperbolic tilings De Las Peñas, Ma. Louise Antonette N Felix, Rene P Gozo, Beaunonie R, Jr Laigo, Glenn R If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilings that emerge from the hyperbolic semi-regular tiling 8·10·16 are reported. 2011-01-01T08:00:00Z text https://archium.ateneo.edu/mathematics-faculty-pubs/102 https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw Mathematics Faculty Publications Archīum Ateneo semi-perfect colouring colour symmetry colour group hyperbolic tiling Mathematics
institution Ateneo De Manila University
building Ateneo De Manila University Library
continent Asia
country Philippines
Philippines
content_provider Ateneo De Manila University Library
collection archium.Ateneo Institutional Repository
topic semi-perfect colouring
colour symmetry
colour group
hyperbolic tiling
Mathematics
spellingShingle semi-perfect colouring
colour symmetry
colour group
hyperbolic tiling
Mathematics
De Las Peñas, Ma. Louise Antonette N
Felix, Rene P
Gozo, Beaunonie R, Jr
Laigo, Glenn R
Semi-perfect colourings of hyperbolic tilings
description If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilings that emerge from the hyperbolic semi-regular tiling 8·10·16 are reported.
format text
author De Las Peñas, Ma. Louise Antonette N
Felix, Rene P
Gozo, Beaunonie R, Jr
Laigo, Glenn R
author_facet De Las Peñas, Ma. Louise Antonette N
Felix, Rene P
Gozo, Beaunonie R, Jr
Laigo, Glenn R
author_sort De Las Peñas, Ma. Louise Antonette N
title Semi-perfect colourings of hyperbolic tilings
title_short Semi-perfect colourings of hyperbolic tilings
title_full Semi-perfect colourings of hyperbolic tilings
title_fullStr Semi-perfect colourings of hyperbolic tilings
title_full_unstemmed Semi-perfect colourings of hyperbolic tilings
title_sort semi-perfect colourings of hyperbolic tilings
publisher Archīum Ateneo
publishDate 2011
url https://archium.ateneo.edu/mathematics-faculty-pubs/102
https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw
_version_ 1728621298219745280