Semi-perfect colourings of hyperbolic tilings
If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2011
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/mathematics-faculty-pubs/102 https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.mathematics-faculty-pubs-1101 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.mathematics-faculty-pubs-11012022-03-18T00:22:00Z Semi-perfect colourings of hyperbolic tilings De Las Peñas, Ma. Louise Antonette N Felix, Rene P Gozo, Beaunonie R, Jr Laigo, Glenn R If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilings that emerge from the hyperbolic semi-regular tiling 8·10·16 are reported. 2011-01-01T08:00:00Z text https://archium.ateneo.edu/mathematics-faculty-pubs/102 https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw Mathematics Faculty Publications Archīum Ateneo semi-perfect colouring colour symmetry colour group hyperbolic tiling Mathematics |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
Ateneo De Manila University Library |
collection |
archium.Ateneo Institutional Repository |
topic |
semi-perfect colouring colour symmetry colour group hyperbolic tiling Mathematics |
spellingShingle |
semi-perfect colouring colour symmetry colour group hyperbolic tiling Mathematics De Las Peñas, Ma. Louise Antonette N Felix, Rene P Gozo, Beaunonie R, Jr Laigo, Glenn R Semi-perfect colourings of hyperbolic tilings |
description |
If G is the symmetry group of an uncoloured tiling, then a colouring of the tiling is semi-perfect if the associated colour group is a subgroup of G of index 2. Results are presented that show how to identify and construct semi-perfect colourings of symmetrical tilings. Semi-perfectly coloured tilings that emerge from the hyperbolic semi-regular tiling 8·10·16 are reported. |
format |
text |
author |
De Las Peñas, Ma. Louise Antonette N Felix, Rene P Gozo, Beaunonie R, Jr Laigo, Glenn R |
author_facet |
De Las Peñas, Ma. Louise Antonette N Felix, Rene P Gozo, Beaunonie R, Jr Laigo, Glenn R |
author_sort |
De Las Peñas, Ma. Louise Antonette N |
title |
Semi-perfect colourings of hyperbolic tilings |
title_short |
Semi-perfect colourings of hyperbolic tilings |
title_full |
Semi-perfect colourings of hyperbolic tilings |
title_fullStr |
Semi-perfect colourings of hyperbolic tilings |
title_full_unstemmed |
Semi-perfect colourings of hyperbolic tilings |
title_sort |
semi-perfect colourings of hyperbolic tilings |
publisher |
Archīum Ateneo |
publishDate |
2011 |
url |
https://archium.ateneo.edu/mathematics-faculty-pubs/102 https://www.tandfonline.com/doi/full/10.1080/14786435.2010.524901?casa_token=BnEw4NIKPCMAAAAA%3AKvw64pacgz9qKiGvhaDQ0ghSrjC0hgqF3DjqOwJDUhL8sJBAi4QvnAQi15gcEZLE8ieSymYMZLjiLw |
_version_ |
1728621298219745280 |