On Color Groups of Bravais Colorings of Planar Modules with Quasicrystallographic Symmetries

In this work we study the color symmetries pertaining to colorings of Mn = Z[ξ], where ξ = exp (2πi/n) for n ∈ {5,8,12} which yield standard symmetries of quasicrystals. The first part of the paper treats Mn as a four dimensional lattice Λ with symmetry group G and a result is provided on sublattice...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bugarin, Enrico Paolo, De Las Peñas, Ma. Louise Antonette N, Evidente, Imogene F, Felix, Rene P, Frettlöh, Dirk
التنسيق: text
منشور في: Archīum Ateneo 2008
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/mathematics-faculty-pubs/104
https://www.degruyter.com/view/journals/zkri/223/11-12/article-p785.xml?tab_body=abstract
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this work we study the color symmetries pertaining to colorings of Mn = Z[ξ], where ξ = exp (2πi/n) for n ∈ {5,8,12} which yield standard symmetries of quasicrystals. The first part of the paper treats Mn as a four dimensional lattice Λ with symmetry group G and a result is provided on sublattices of Λ which are invariant under the point group of G. The second part of the paper characterizes the color symmetry groups and color fixing groups corresponding to Bravais colorings of Mn using an approach involving ideals.