On eigenvalue bounds for the finite-state birth-death process intensity matrix
The paper sets forth a novel eigenvalue interlacing property across the finite-state birth-death process intensity matrix and two clearly identified submatrices as an extension of Cauchy’s interlace theorem for Hermitian matrix eigenvalues. A supplemental proof involving an examination of probabilit...
Saved in:
Main Authors: | Tan, R.R.P, Ikeda, K, Garces, Len Patrick Dominic M |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2020
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/mathematics-faculty-pubs/134 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1133&context=mathematics-faculty-pubs |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Cyclotomic integers and finite geometry
由: Bernhard, Schmidt.
出版: (2009) -
A sharp exponent bound for McFarland difference sets with p=2
由: Ma, Siu Lun., et al.
出版: (2009) -
Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
由: Bryant,D.E., et al.
出版: (2015) -
String C-groups of order 1024
由: Gomi, Yasushi, et al.
出版: (2018) -
A Framework for Coloring Symmetrical Patterns
由: De Las Peñas, Ma. Louise Antonette N, et al.
出版: (1999)