Generalized Weyl Quantization and Time

This work presents quantization of time of arrival functions using generalized Stratonovich-Weyl quantization. We take into account the ordering problems involved, mainly the Born-Jordan and the symmetric ordering schemes. We call attention to the combination of the group theoretic methods usually e...

全面介紹

Saved in:
書目詳細資料
Main Authors: Romeo, Daisy A, Nable, Job A
格式: text
出版: Archīum Ateneo 2021
主題:
在線閱讀:https://archium.ateneo.edu/mathematics-faculty-pubs/152
https://projecteuclid.org/proceedings/geometry-integrability-and-quantization/Proceedings-of-the-Twenty-Second-International-Conference-on-Geometry-Integrability/Chapter/Generalized-Weyl-Quantization-and-Time/10.7546/giq-22-2021-242-252?tab=ChapterArticleLink
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Ateneo De Manila University
實物特徵
總結:This work presents quantization of time of arrival functions using generalized Stratonovich-Weyl quantization. We take into account the ordering problems involved, mainly the Born-Jordan and the symmetric ordering schemes. We call attention to the combination of the group theoretic methods usually employed in Weyl quantization with the implementation of different ordering schemes via integral kernel factors. It is possible to, and we do, apply the Pegg-Barnett method to the quantization of time to address physical issues such as boundedness and self-adjointness.