On the Sigma Value and Sigma Range of the Join of a Finite Number of Even Cycles of the Same Order
Let c be a vertex coloring of a simple; connected graph G that uses positive integers for colors. For a vertex v of G; the color sum of v is the sum of the colors of the neighbors of v. If no two adjacent vertices of G have the same color sum; then c is called a sigma coloring of G. The sigma chroma...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2021
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/mathematics-faculty-pubs/159 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1166&context=mathematics-faculty-pubs |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
Summary: | Let c be a vertex coloring of a simple; connected graph G that uses positive integers for colors. For a vertex v of G; the color sum of v is the sum of the colors of the neighbors of v. If no two adjacent vertices of G have the same color sum; then c is called a sigma coloring of G. The sigma chromatic number of G is the minimum number of colors required in a sigma coloring of G. Let max(c) be the largest color assigned to a vertex of G by a coloring c. The sigma value of G is the minimum value of max(c) over all sigma k−colorings c of G where k is the sigma chromatic number of G. On the other hand; the sigma range of G is the minimum value of max(c) over all sigma colorings c of G. In this paper; we determine the sigma value and the sigma range of the join of a finite number of even cycles of the same order. |
---|