A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics

We consider a method of lines (MOL) approach to determine prices of European and American exchange options when underlying asset prices are modeled with stochastic volatility and jump-diffusion dynamics. As with any other numerical scheme for partial differential equations (PDEs); the MOL becomes in...

Full description

Saved in:
Bibliographic Details
Main Authors: Garces, Len Patrick Dominic M, Cheang, Gerald H. L.
Format: text
Published: Archīum Ateneo 2021
Subjects:
Online Access:https://archium.ateneo.edu/mathematics-faculty-pubs/157
https://www.tandfonline.com/doi/abs/10.1080/14697688.2021.1926534?journalCode=rquf20
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
id ph-ateneo-arc.mathematics-faculty-pubs-1168
record_format eprints
spelling ph-ateneo-arc.mathematics-faculty-pubs-11682022-02-03T08:21:18Z A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics Garces, Len Patrick Dominic M Cheang, Gerald H. L. We consider a method of lines (MOL) approach to determine prices of European and American exchange options when underlying asset prices are modeled with stochastic volatility and jump-diffusion dynamics. As with any other numerical scheme for partial differential equations (PDEs); the MOL becomes increasingly complex when higher dimensions are involved; so we first simplify the problem by transforming the exchange option into a call option written on the ratio of the yield processes of the two assets. This is achieved by taking the second asset yield process as the numéraire. Under the equivalent martingale measure induced by this change of numéraire; we derive the exchange option pricing integro-partial differential equations (IPDEs) and investigate the early exercise boundary of the American exchange option. We then discuss a numerical solution of the IPDEs using the MOL; its implementation using computing software and possible alternative boundary conditions at the far limits of the computational domain. Our analytical and numerical investigation shows that the near-maturity behavior of the early exercise boundary of the American exchange option is significantly influenced by the dividend yields and the presence of jumps in the underlying asset prices. Furthermore; with the numerical results generated by the MOL; we are able to show that key jump and stochastic volatility parameters significantly affect the early exercise boundary and exchange option prices. Our numerical analysis also verifies that the MOL performs more efficiently; than other finite difference methods or simulation approaches for American options; since the MOL integrates the computation of option prices; greeks and the early exercise boundary; and does so with the least error. 2021-06-16T07:00:00Z text https://archium.ateneo.edu/mathematics-faculty-pubs/157 https://www.tandfonline.com/doi/abs/10.1080/14697688.2021.1926534?journalCode=rquf20 Mathematics Faculty Publications Archīum Ateneo Exchange options; Jump-diffusion processes; Method of lines; Put-call transformation; Stochastic volatility Mathematics
institution Ateneo De Manila University
building Ateneo De Manila University Library
continent Asia
country Philippines
Philippines
content_provider Ateneo De Manila University Library
collection archium.Ateneo Institutional Repository
topic Exchange options; Jump-diffusion processes; Method of lines; Put-call transformation; Stochastic volatility
Mathematics
spellingShingle Exchange options; Jump-diffusion processes; Method of lines; Put-call transformation; Stochastic volatility
Mathematics
Garces, Len Patrick Dominic M
Cheang, Gerald H. L.
A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
description We consider a method of lines (MOL) approach to determine prices of European and American exchange options when underlying asset prices are modeled with stochastic volatility and jump-diffusion dynamics. As with any other numerical scheme for partial differential equations (PDEs); the MOL becomes increasingly complex when higher dimensions are involved; so we first simplify the problem by transforming the exchange option into a call option written on the ratio of the yield processes of the two assets. This is achieved by taking the second asset yield process as the numéraire. Under the equivalent martingale measure induced by this change of numéraire; we derive the exchange option pricing integro-partial differential equations (IPDEs) and investigate the early exercise boundary of the American exchange option. We then discuss a numerical solution of the IPDEs using the MOL; its implementation using computing software and possible alternative boundary conditions at the far limits of the computational domain. Our analytical and numerical investigation shows that the near-maturity behavior of the early exercise boundary of the American exchange option is significantly influenced by the dividend yields and the presence of jumps in the underlying asset prices. Furthermore; with the numerical results generated by the MOL; we are able to show that key jump and stochastic volatility parameters significantly affect the early exercise boundary and exchange option prices. Our numerical analysis also verifies that the MOL performs more efficiently; than other finite difference methods or simulation approaches for American options; since the MOL integrates the computation of option prices; greeks and the early exercise boundary; and does so with the least error.
format text
author Garces, Len Patrick Dominic M
Cheang, Gerald H. L.
author_facet Garces, Len Patrick Dominic M
Cheang, Gerald H. L.
author_sort Garces, Len Patrick Dominic M
title A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
title_short A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
title_full A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
title_fullStr A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
title_full_unstemmed A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics
title_sort numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics
publisher Archīum Ateneo
publishDate 2021
url https://archium.ateneo.edu/mathematics-faculty-pubs/157
https://www.tandfonline.com/doi/abs/10.1080/14697688.2021.1926534?journalCode=rquf20
_version_ 1724079167353389056