Global Stability Analysis of Dengue Model with Awareness, Vector Control and Time Delays

In this paper; a mathematical model for a single-strain dengue virus transmission; incorporating vector control; disease awareness among susceptible humans; and both the latent delays for human and mosquitoes; is proposed and studied. The global stability properties of disease-free equilibrium and e...

Full description

Saved in:
Bibliographic Details
Main Authors: Macalalag, Jay Michael R, Teng, Timothy Robin Y, De Lara-Tuprio, Elvira P
Format: text
Published: Archīum Ateneo 2021
Subjects:
Online Access:https://archium.ateneo.edu/mathematics-faculty-pubs/174
https://link.springer.com/chapter/10.1007/978-3-030-79606-8_14
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
Description
Summary:In this paper; a mathematical model for a single-strain dengue virus transmission; incorporating vector control; disease awareness among susceptible humans; and both the latent delays for human and mosquitoes; is proposed and studied. The global stability properties of disease-free equilibrium and endemic equilibrium are completely established through Lyapunov functionals and LaSalle's invariance principle. The global dynamics of the equilibrium points are characterized by the value of basic reproductive number R0 . The disease-free equilibrium is globally asymptotically stable if R0 < 1 ; and is unstable if R0 > 1 . Furthermore; the endemic equilibrium is globally asymptotically stable if R0>1 . Numerical simulations are presented to illustrate the theoretical results.