Symbol Correspondence for Euclidean Systems

The three main objects that serve as the foundation of quantum mechanics on phase space are the Weyl transform, the Wigner distribution function, and the ⋆-product of phase space functions. In this article, the ⋆-product of functions on the Euclidean motion group of rank three, E(3), is constructed....

Full description

Saved in:
Bibliographic Details
Main Authors: Natividad, Laarni B, Nable, Job A
Format: text
Published: Archīum Ateneo 2021
Subjects:
Online Access:https://archium.ateneo.edu/mathematics-faculty-pubs/192
https://projecteuclid.org/journals/journal-of-geometry-and-symmetry-in-physics/volume-62/issue-none/Symbol-Correspondence-for-Euclidean-Systems/10.7546/jgsp-62-2021-67-84.short?tab=ArticleLink
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
Description
Summary:The three main objects that serve as the foundation of quantum mechanics on phase space are the Weyl transform, the Wigner distribution function, and the ⋆-product of phase space functions. In this article, the ⋆-product of functions on the Euclidean motion group of rank three, E(3), is constructed. C ∗ -algebra properties of ⋆s on E(3) are presented, establishing a phase space symbol calculus for functions whose parameters are translations and rotations. The key ingredients in the construction are the unitary irreducible representations of the group.