Parameter-Efficient Convolutional Neural Networks using Wavelet Transforms
Convolutional Neural Networks (CNN's) are known to perform well on computer vision tasks such as image classification, image segmentation, and object detection. However, one major drawback of CNN's is the huge amount of computing and memory resources needed to train them. In this paper, we...
Saved in:
Main Authors: | Malubay, Arnel L., Santos, Kurt Anthony C.De Los, Nable, Job A |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2024
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/mathematics-faculty-pubs/255 https://doi.org/10.1063/5.0192309 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Ateneo De Manila University |
相似書籍
-
Efficient architecture for discrete wavelet transform using daubechies
由: Zhang Xiaoyin
出版: (2011) -
Prediction of time series using wavelet transform and neural network
由: Piyamas Kanuan
出版: (2012) -
Klasifikasi Sentimen Ulasan Konsumen Menggunakan Convolutional Neural Network
由: Bayu Aldiyansyah
出版: (2019) -
The application of wavelet transform to analyze the rainfall data
由: Nareemal Hilae
出版: (2018) -
Fundamental Phase Space Formula for the Similitude Group
由: Natividad, Laarni B., et al.
出版: (2024)