Applying XGBoost, Neural Networks, and Oversampling in the Undernutrition Classification of School-Aged Children in the Philippines
In the Philippines, one in five school-aged children are affected by undernutrition, increasing their risk of physical and cognitive development. The Department of Education (DepEd) attempts to address this issue by targeting children with low body mass index (BMI) for their school-based feeding pro...
محفوظ في:
المؤلفون الرئيسيون: | Yiu, Mark Kevin A.Ong, Pastor, Carlo Gabriel M., Candano, Gabrielle Jackie C., Miro, Eden Delight, Antonio, Victor Andrew A., Go, Clark Kendrick C |
---|---|
التنسيق: | text |
منشور في: |
Archīum Ateneo
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://archium.ateneo.edu/mathematics-faculty-pubs/301 https://doi.org/10.1063/5.0213404 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Predicting Undernutrition Among Elementary Schoolchildren in the Philippines Using Machine Learning Algorithms
بواسطة: Siy Van, Vanessa T., وآخرون
منشور في: (2022) -
Predicting undernutrition among elementary schoolchildren in the Philippines using machine learning algorithms
بواسطة: Siy Van, Vanessa T, وآخرون
منشور في: (2022) -
What do Filipino Children Eat: Applying Market Basket Analysis on the Meals of School-Aged Children in the Philippines
بواسطة: Castillon, Enzo Gabriel, وآخرون
منشور في: (2024) -
Multilevel Pathways of Rural and Urban Poverty as Determinants of Childhood Undernutrition in the Philippines
بواسطة: Siy Van, Vanessa T., وآخرون
منشور في: (2021) -
Primary and secondary undernutrition
بواسطة: Kraisid Tontisirin, وآخرون
منشور في: (2018)