Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials
We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material (VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to ε, where ε is equal to the rati...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2018
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/physics-faculty-pubs/50 https://iopscience.iop.org/article/10.1088/0256-307X/35/8/084501/meta |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.physics-faculty-pubs-1049 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.physics-faculty-pubs-10492020-05-26T07:30:43Z Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials Dengal, Adones B Maquiling, Joel T We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material (VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to ε, where ε is equal to the ratio between the square of the dimensionless acceleration Γ and the square of the vibration frequency f of the container. Empirical results reveal that as the VGM transits from local-to-global convection, an increase in ε generally corresponds to an increase in the magnitudes of the rotational ω RS and translational v CM velocities of the sphere, an increase in the observed tilting angle θ bed of the VGM bed, and a decrease in the time t wall it takes the sphere to roll down the tilted VGM bed and hit the container wall. During unstable convection, an increase in ε results in a sharp decrease in the sphere's peak and mean ω RS, and a slight increase in t wall. For the range of ε values covered in this study, the sphere may execute persistent rotation, wobbling or jamming, depending on the vibration parameters and the resulting convective flow in the system. 2018-01-01T08:00:00Z text https://archium.ateneo.edu/physics-faculty-pubs/50 https://iopscience.iop.org/article/10.1088/0256-307X/35/8/084501/meta Physics Faculty Publications Archīum Ateneo Rotational dynamics Vibrated granular material Local-to-global convection Persistent rotation Wobbling or jamming Physics |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
country |
Philippines |
collection |
archium.Ateneo Institutional Repository |
topic |
Rotational dynamics Vibrated granular material Local-to-global convection Persistent rotation Wobbling or jamming Physics |
spellingShingle |
Rotational dynamics Vibrated granular material Local-to-global convection Persistent rotation Wobbling or jamming Physics Dengal, Adones B Maquiling, Joel T Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
description |
We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material (VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to ε, where ε is equal to the ratio between the square of the dimensionless acceleration Γ and the square of the vibration frequency f of the container. Empirical results reveal that as the VGM transits from local-to-global convection, an increase in ε generally corresponds to an increase in the magnitudes of the rotational ω RS and translational v CM velocities of the sphere, an increase in the observed tilting angle θ bed of the VGM bed, and a decrease in the time t wall it takes the sphere to roll down the tilted VGM bed and hit the container wall. During unstable convection, an increase in ε results in a sharp decrease in the sphere's peak and mean ω RS, and a slight increase in t wall. For the range of ε values covered in this study, the sphere may execute persistent rotation, wobbling or jamming, depending on the vibration parameters and the resulting convective flow in the system. |
format |
text |
author |
Dengal, Adones B Maquiling, Joel T |
author_facet |
Dengal, Adones B Maquiling, Joel T |
author_sort |
Dengal, Adones B |
title |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
title_short |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
title_full |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
title_fullStr |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
title_full_unstemmed |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials |
title_sort |
dynamics of a rotating sphere on free surface of vibrated granular materials |
publisher |
Archīum Ateneo |
publishDate |
2018 |
url |
https://archium.ateneo.edu/physics-faculty-pubs/50 https://iopscience.iop.org/article/10.1088/0256-307X/35/8/084501/meta |
_version_ |
1681506617559875584 |