Exact Evaluation and Resummation of the Divergent Expansion for the Heisenberg-Euler Lagrangian

We devise a novel resummation prescription based on the method of finite-part integration [Galapon EA. 2017 Proc. R. Soc A 473, 20160567. (doi:10.1098/rspa.2016.0567)] to perform a constrained extrapolation of the divergent weak-field perturbative expansion for the Heisenberg-Euler Lagrangian to the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Tica, Christian D., Blancas, Philip Jordan D, Galapon, Eric A.
التنسيق: text
منشور في: Archīum Ateneo 2025
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/physics-faculty-pubs/182
https://doi.org/10.1098/rspa.2024.0843
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Ateneo De Manila University
الوصف
الملخص:We devise a novel resummation prescription based on the method of finite-part integration [Galapon EA. 2017 Proc. R. Soc A 473, 20160567. (doi:10.1098/rspa.2016.0567)] to perform a constrained extrapolation of the divergent weak-field perturbative expansion for the Heisenberg-Euler Lagrangian to the non-perturbative strong magnetic and electric field regimes. In the latter case, the prescription allowed us to reconstruct the non-perturbative imaginary part from a finite collection of the real expansion coefficients. We also demonstrate the utility of the various equivalent representations of Hadamard's finite part in deriving the exact closed form for the Heisenberg-Euler Lagrangian from the non-perturbative integral representation.