Engineering a Data Processing Pipeline for an Ultra-Lightweight Lensless Fluorescence Imaging Device with Neuronal-Cluster Resolution

In working toward the goal of uncovering the inner workings of the brain, various imaging techniques have been the subject of research. Among the prominent technologies are devices that are based on the ability of transgenic animals to signal neuronal activity through fluorescent indicators. This pa...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Zihao, Guinto, Mark Christian S.G., Lim, Brian Godwin S., Tan, Renzo Roel P, Yoshimoto, Junichiro, Ikeda, Kazushi, Ohta, Yasumi, Ohta, Jun
Format: text
Published: Archīum Ateneo 2023
Subjects:
Online Access:https://archium.ateneo.edu/qmit-faculty-pubs/17
https://doi.org/10.1007/s10015-023-00875-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
Description
Summary:In working toward the goal of uncovering the inner workings of the brain, various imaging techniques have been the subject of research. Among the prominent technologies are devices that are based on the ability of transgenic animals to signal neuronal activity through fluorescent indicators. This paper investigates the utility of an original ultra-lightweight needle-type device in fluorescence neuroimaging. A generalizable data processing pipeline is proposed to compensate for the reduced image resolution of the lensless device. In particular, a modular solution centered on baseline-induced noise reduction and principal component analysis is designed as a stand-in for physical lenses in the aggregation and quasi-reconstruction of neuronal activity. Data-driven evidence backing the identification of regions of interest is then demonstrated, establishing the relative superiority of the method over neuroscience conventions within comparable contexts.