Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine

A global concern is a shortage of kidney donors becomes a major impediment to the treatment of kidney disease, leaving millions of chronic kidney patients without total functional replacement. Chronic kidney disease reduces survival, quality of life and treatment is too expensive. Hence, this study...

Full description

Saved in:
Bibliographic Details
Main Author: PERUELO, DOROTHY
Format: text
Published: Archīum Ateneo 2017
Subjects:
Online Access:https://archium.ateneo.edu/theses-dissertations/25
http://rizalls.lib.admu.edu.ph/#section=resource&resourceid=1193570992&currentIndex=0&view=fullDetailsDetailsTab
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Ateneo De Manila University
id ph-ateneo-arc.theses-dissertations-1024
record_format eprints
spelling ph-ateneo-arc.theses-dissertations-10242021-07-06T02:59:16Z Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine PERUELO, DOROTHY A global concern is a shortage of kidney donors becomes a major impediment to the treatment of kidney disease, leaving millions of chronic kidney patients without total functional replacement. Chronic kidney disease reduces survival, quality of life and treatment is too expensive. Hence, this study came about to explore an alternative but renewable and low-cost materials to be used as an adsorbent in a kidney assist device.The use of biomass - derive materials such as bamboo plants for the production of activated charcoal become attractive nowadays due to its ease of access, renewability and low price. Bamboo charcoal has recently been considered by various research investigations due to its high adsorption potential to various target molecules, high surface area, microporous nature and amphoteric surface functional groups. The surface chemistry of bamboo charcoal and its composite with poly(methacrylate) (PMAA) bound with chitosan to form a novel material of Chitosan / Bamboo Charcoal / Polymethacrylate or CTS/BC/PMAA are presented in this paper. The following adsorbents were specifically studied: steam activated bamboo charcoal (BC), chitosan / bamboo charcoal (CTS/BC), chitosan / bamboo charcoal / poly(methacrylate), (CTS/BC/PMAA) composite beads. The surface characteristics of the adsorbents are elucidated using various surface characterization techniques. The adsorption potential for the capture of creatinine was studied using equilibrium and dynamic flow techniques. The initial biocompatibility of the composite beads were conducted using established procedures of Lactate Dehydrogenase (LDH) and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] or MTT assays with L 929 fibroblast cells. Thermal studies such as Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) have shown a successful coating of poly(methacrylate) and chitosan to the steam activated BC. The two composite beads such as Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA) have shown an acidic surface as indicated by pH point of zero charge (pHpzc), Boehm titration, Fourier Transform - Infrared spectroscopy (FT-IR) and X-ray photoelectron Spectroscopy (XPS). The Brunnauer Emmett Teller (BET) and Scanning Electron Microscopy (SEM) revealed high surface area and microporous nature of the bamboo charcoal - containing composite beads such as Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA). Results indicated that the composite beads adsorb the maximum amounts of creatinine at its isoelectric pH. Compared to the neat BC, however, there was observed a decrease in adsorption probably due to decrease in available micropores for adsorption. However, the presence of poly(methacrylate) in the composite rendered the material more accessible to polar substance with mechanical strength by preventing the release of carbon particles in the solution. The cell viability of Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA) are 87.0% and 85.2%, respectively while the lactate dehydrogenase (LDH) assay revealed cytotoxicity of the beads between 34-42%. 2017-01-01T08:00:00Z text https://archium.ateneo.edu/theses-dissertations/25 http://rizalls.lib.admu.edu.ph/#section=resource&resourceid=1193570992&currentIndex=0&view=fullDetailsDetailsTab Theses and Dissertations (All) Archīum Ateneo Carbon, Activated Carbon, Activated -- Therapeutic use Creatinine Adsorption Chitosan Surface chemistry.
institution Ateneo De Manila University
building Ateneo De Manila University Library
continent Asia
country Philippines
Philippines
content_provider Ateneo De Manila University Library
collection archium.Ateneo Institutional Repository
topic Carbon, Activated
Carbon, Activated -- Therapeutic use
Creatinine
Adsorption
Chitosan
Surface chemistry.
spellingShingle Carbon, Activated
Carbon, Activated -- Therapeutic use
Creatinine
Adsorption
Chitosan
Surface chemistry.
PERUELO, DOROTHY
Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
description A global concern is a shortage of kidney donors becomes a major impediment to the treatment of kidney disease, leaving millions of chronic kidney patients without total functional replacement. Chronic kidney disease reduces survival, quality of life and treatment is too expensive. Hence, this study came about to explore an alternative but renewable and low-cost materials to be used as an adsorbent in a kidney assist device.The use of biomass - derive materials such as bamboo plants for the production of activated charcoal become attractive nowadays due to its ease of access, renewability and low price. Bamboo charcoal has recently been considered by various research investigations due to its high adsorption potential to various target molecules, high surface area, microporous nature and amphoteric surface functional groups. The surface chemistry of bamboo charcoal and its composite with poly(methacrylate) (PMAA) bound with chitosan to form a novel material of Chitosan / Bamboo Charcoal / Polymethacrylate or CTS/BC/PMAA are presented in this paper. The following adsorbents were specifically studied: steam activated bamboo charcoal (BC), chitosan / bamboo charcoal (CTS/BC), chitosan / bamboo charcoal / poly(methacrylate), (CTS/BC/PMAA) composite beads. The surface characteristics of the adsorbents are elucidated using various surface characterization techniques. The adsorption potential for the capture of creatinine was studied using equilibrium and dynamic flow techniques. The initial biocompatibility of the composite beads were conducted using established procedures of Lactate Dehydrogenase (LDH) and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] or MTT assays with L 929 fibroblast cells. Thermal studies such as Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) have shown a successful coating of poly(methacrylate) and chitosan to the steam activated BC. The two composite beads such as Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA) have shown an acidic surface as indicated by pH point of zero charge (pHpzc), Boehm titration, Fourier Transform - Infrared spectroscopy (FT-IR) and X-ray photoelectron Spectroscopy (XPS). The Brunnauer Emmett Teller (BET) and Scanning Electron Microscopy (SEM) revealed high surface area and microporous nature of the bamboo charcoal - containing composite beads such as Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA). Results indicated that the composite beads adsorb the maximum amounts of creatinine at its isoelectric pH. Compared to the neat BC, however, there was observed a decrease in adsorption probably due to decrease in available micropores for adsorption. However, the presence of poly(methacrylate) in the composite rendered the material more accessible to polar substance with mechanical strength by preventing the release of carbon particles in the solution. The cell viability of Chitosan / Bamboo Charcoal (CTS/BC) and Chitosan / Bamboo Charcoal / Polymethacrylate (CTS/BC/PMAA) are 87.0% and 85.2%, respectively while the lactate dehydrogenase (LDH) assay revealed cytotoxicity of the beads between 34-42%.
format text
author PERUELO, DOROTHY
author_facet PERUELO, DOROTHY
author_sort PERUELO, DOROTHY
title Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
title_short Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
title_full Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
title_fullStr Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
title_full_unstemmed Preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
title_sort preparation and surface chemistry of novel chitosan / bamboo charcoal / poly (methacrylate) composites for the adsorption of creatinine
publisher Archīum Ateneo
publishDate 2017
url https://archium.ateneo.edu/theses-dissertations/25
http://rizalls.lib.admu.edu.ph/#section=resource&resourceid=1193570992&currentIndex=0&view=fullDetailsDetailsTab
_version_ 1712577817480265728