Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate
Rice straw, one of the most abundant lignocellulosic waste is rich in cellulose, which makes it a favorable substrate for cellulases. Phanerochaete chrysosporium is a white-rot basidiomycete that is best known for its ligninolytic enzyme system, however, there were only few reports regarding its cel...
Saved in:
Main Author: | |
---|---|
Format: | text |
Published: |
Archīum Ateneo
2020
|
Subjects: | |
Online Access: | https://archium.ateneo.edu/theses-dissertations/392 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Ateneo De Manila University |
id |
ph-ateneo-arc.theses-dissertations-1518 |
---|---|
record_format |
eprints |
spelling |
ph-ateneo-arc.theses-dissertations-15182021-09-27T03:00:04Z Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate De Leon, Jemillie Madonna Rice straw, one of the most abundant lignocellulosic waste is rich in cellulose, which makes it a favorable substrate for cellulases. Phanerochaete chrysosporium is a white-rot basidiomycete that is best known for its ligninolytic enzyme system, however, there were only few reports regarding its cellulase activity. This study evaluated the compatibility of unknown fungal isolates (UFIs) collected from decaying woods with P. chrysosporium as well as their cellulase activities and glucose yields of their monoculture and co-culture isolates. Qualitative and quantitative screening tests revealed that the P. chrysosporium co-culture SP 6.1 + PC, obtained the highest cellulase activity and glucose yield. Moreover, SP 6.1 + PC also exhibited the highest level of significant difference (p<0.0001) compared to its monoculture isolates. The macroscopic colony morphology and molecular methods revealed that all UFIs are fungal species from Phylum Ascomycota. Specifically, the UFIs SP 3.2, SP 5.1, SP 6.1, SP 9, and SP 12 were Aspergillus clavatophorus, Meyerozyma guilliermondii, Xylaria grammica, Penicillium shearii, and Hypoxylon sp., respectively. The most promising co-culture isolate combination was revealed as P. chrysosporium and X. grammica. Surprisingly, there were only few reports on the enzyme profiles of the fungal isolates utilized. The present study, therefore, demonstrated the potential of P. chrysosporium co-culture of X. grammica as efficient cellulase producers utilizing rice straw as a substrate. 2020-01-01T08:00:00Z text https://archium.ateneo.edu/theses-dissertations/392 Theses and Dissertations (All) Archīum Ateneo n/a |
institution |
Ateneo De Manila University |
building |
Ateneo De Manila University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
Ateneo De Manila University Library |
collection |
archium.Ateneo Institutional Repository |
topic |
n/a |
spellingShingle |
n/a De Leon, Jemillie Madonna Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
description |
Rice straw, one of the most abundant lignocellulosic waste is rich in cellulose, which makes it a favorable substrate for cellulases. Phanerochaete chrysosporium is a white-rot basidiomycete that is best known for its ligninolytic enzyme system, however, there were only few reports regarding its cellulase activity. This study evaluated the compatibility of unknown fungal isolates (UFIs) collected from decaying woods with P. chrysosporium as well as their cellulase activities and glucose yields of their monoculture and co-culture isolates. Qualitative and quantitative screening tests revealed that the P. chrysosporium co-culture SP 6.1 + PC, obtained the highest cellulase activity and glucose yield. Moreover, SP 6.1 + PC also exhibited the highest level of significant difference (p<0.0001) compared to its monoculture isolates. The macroscopic colony morphology and molecular methods revealed that all UFIs are fungal species from Phylum Ascomycota. Specifically, the UFIs SP 3.2, SP 5.1, SP 6.1, SP 9, and SP 12 were Aspergillus clavatophorus, Meyerozyma guilliermondii, Xylaria grammica, Penicillium shearii, and Hypoxylon sp., respectively. The most promising co-culture isolate combination was revealed as P. chrysosporium and X. grammica. Surprisingly, there were only few reports on the enzyme profiles of the fungal isolates utilized. The present study, therefore, demonstrated the potential of P. chrysosporium co-culture of X. grammica as efficient cellulase producers utilizing rice straw as a substrate. |
format |
text |
author |
De Leon, Jemillie Madonna |
author_facet |
De Leon, Jemillie Madonna |
author_sort |
De Leon, Jemillie Madonna |
title |
Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
title_short |
Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
title_full |
Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
title_fullStr |
Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
title_full_unstemmed |
Cellulase Activity of Fungal Isolated and Phanerochaete Chrysosporium Co-Culture Isolates Using Rice Straw as Substrate |
title_sort |
cellulase activity of fungal isolated and phanerochaete chrysosporium co-culture isolates using rice straw as substrate |
publisher |
Archīum Ateneo |
publishDate |
2020 |
url |
https://archium.ateneo.edu/theses-dissertations/392 |
_version_ |
1712577844239925248 |