EEG data space adaptation to reduce intersession nonstationarity in brain-computer interface

A major challenge in EEG-based brain-computer interfaces (BCIs) is the intersession nonstationarity in the EEG data that often leads to deteriorated BCI performances. To address this issue, this letter proposes a novel data space adaptation technique, EEG data space adaptation (EEG-DSA), to linearly...

Full description

Saved in:
Bibliographic Details
Main Authors: Arvaneh, Mahnaz, Guan, Cuntai, Ang, Kai Keng, Quek, Chai
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/100036
http://hdl.handle.net/10220/18440
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A major challenge in EEG-based brain-computer interfaces (BCIs) is the intersession nonstationarity in the EEG data that often leads to deteriorated BCI performances. To address this issue, this letter proposes a novel data space adaptation technique, EEG data space adaptation (EEG-DSA), to linearly transform the EEG data from the target space (evaluation session), such that the distribution difference to the source space (training session) is minimized. Using the Kullback-Leibler (KL) divergence criterion, we propose two versions of the EEG-DSA algorithm: the supervised version, when labeled data are available in the evaluation session, and the unsupervised version, when labeled data are not available. The performance of the proposed EEG-DSA algorithm is evaluated on the publicly available BCI Competition IV data set IIa and a data set recorded from 16 subjects performing motor imagery tasks on different days. The results show that the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the results without adaptation in terms of classification accuracy. The results also show that for subjects with poor BCI performances when no adaptation is applied, the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the unsupervised bias adaptation algorithm (PMean).