On the oscillation of fractional differential equations
In this paper we initiate the oscillation theory for fractional differential equations. Oscillation criteria are obtained for a class of nonlinear fractional differential equations of the form Dqax+f1(t,x)=v(t)+f2(t,x),limt→aJ1−qax(t)=b1 , where D a q denotes the Riemann-Liouville differential opera...
Saved in:
Main Authors: | Grace, Said R., Agarwal, Ravi P., Wong, Patricia Jia Yiing, Zafer, Ağacık |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100040 http://hdl.handle.net/10220/16261 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Nonpolynomial numerical scheme for fourth-order fractional sub-diffusion equations
由: Li, Xuhao, et al.
出版: (2018) -
Dynamical aspects of initial/boundary value problems for ordinary differential equations
由: Chu, Jifeng, et al.
出版: (2014) -
Parametric quintic spline approach for two-dimensional fractional sub-diffusion equation
由: Li, Xuhao, et al.
出版: (2018) -
Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation
由: Ding, Qinxu, et al.
出版: (2021) -
Eigenvalues of complementary Lidstone boundary value problems
由: Agarwal, Ravi P., et al.
出版: (2014)