Quasi-reversible energy flows in carbon-nanotube oscillators
Quasi-reversible energy flows between orderly intertube axial motion and vibrational modes are studied for isolated systems of two coaxial carbon nanotubes at temperatures ranging from 300 K to 500 K. It is found that the excess intertube van der Waals energy, depleted from the intertube axial motio...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100058 http://hdl.handle.net/10220/8713 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Quasi-reversible energy flows between orderly intertube axial motion and vibrational modes are studied for isolated systems of two coaxial carbon nanotubes at temperatures ranging from 300 K to 500 K. It is found that the excess intertube van der Waals energy, depleted from the intertube axial motion, is primarily stored in low-frequency mechanical modes of the oscillator for an extended period of time. |
---|