Ex vivo assessment of bicuspidization repair in treating severe functional tricuspid regurgitation : a stereo-scopic PIV study
There has been a resurgence of interest in the treatment of severe functional tricuspid regurgitation (FTR) due to the awareness of its poor outcomes and potential percutaneous therapies. Kay bicuspidization has been adapted in percutaneous therapies but its clinical outcome remains uncertain. The p...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100061 http://hdl.handle.net/10220/49951 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | There has been a resurgence of interest in the treatment of severe functional tricuspid regurgitation (FTR) due to the awareness of its poor outcomes and potential percutaneous therapies. Kay bicuspidization has been adapted in percutaneous therapies but its clinical outcome remains uncertain. The present study evaluates the efficacy of Kay repair in a novel ex vivo pulsatile system. Porcine tricuspid valve (TV) (n = 3) was extracted and incorporated into a patient-specific silicon right ventricle (RV) emulating severe FTR, on which Kay repair was subsequently performed. TV area metrics and RV hemodynamic assessment by means of stereo-scopic particle image velocimetry were quantified in both FTR and post-repair conditions. Bicuspidization led to significant increase in cardiac output although the overall increment due to this approach alone was generally small, possibly due to existence of residual TR and the large reduction in TV opening area. Kinetic energy and viscous loss levels were increased post-repair, especially during diastolic filling. Main vortex structures generally maintained post-procedural. However, there was enhanced swirling motion in larger RV domain. Although this might reduce mural-thrombus risk, the relatively more complex vortex phenomenon likely resulted in elevated viscous loss observed and may potentially impact long-term adaptation. The RV hemodynamic alteration after tricuspid repair could be used to predict the success of these future transcatheter solutions. |
---|