A thermal resistance analysis on forced convection with viscous dissipation in a porous medium using entransy dissipation concept
The analytical solution of a two-equation model presented in an earlier study is examined. Heat transfer characterization is classified into two regimes which are dominated by fluid conduction or solid conduction and interstitial heat exchange, respectively by using the entransy dissipation concept....
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100140 http://hdl.handle.net/10220/13568 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The analytical solution of a two-equation model presented in an earlier study is examined. Heat transfer characterization is classified into two regimes which are dominated by fluid conduction or solid conduction and interstitial heat exchange, respectively by using the entransy dissipation concept. The computed pattern of variation of thermal resistance with shape factor S at a fixed Brinkman number for a low ratio of the fluid to solid effective thermal conductivities implies the occurrence of temperature gradient bifurcation as S decreases. Therefore, the thermal diffusion term in the fluid phase in the two-equation model is not negligible for both regimes. |
---|