Self-supervised online metric learning with low rank constraint for scene categorization
Conventional visual recognition systems usually train an image classifier in a bath mode with all training data provided in advance. However, in many practical applications, only a small amount of training samples are available in the beginning and many more would come sequentially during online rec...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100216 http://hdl.handle.net/10220/17819 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-100216 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1002162020-03-07T14:02:44Z Self-supervised online metric learning with low rank constraint for scene categorization Cong, Yang Liu, Ji Yuan, Junsong Luo, Jiebo School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing Conventional visual recognition systems usually train an image classifier in a bath mode with all training data provided in advance. However, in many practical applications, only a small amount of training samples are available in the beginning and many more would come sequentially during online recognition. Because the image data characteristics could change over time, it is important for the classifier to adapt to the new data incrementally. In this paper, we present an online metric learning method to address the online scene recognition problem via adaptive similarity measurement. Given a number of labeled data followed by a sequential input of unseen testing samples, the similarity metric is learned to maximize the margin of the distance among different classes of samples. By considering the low rank constraint, our online metric learning model not only can provide competitive performance compared with the state-of-the-art methods, but also guarantees convergence. A bi-linear graph is also defined to model the pair-wise similarity, and an unseen sample is labeled depending on the graph-based label propagation, while the model can also self-update using the more confident new samples. With the ability of online learning, our methodology can well handle the large-scale streaming video data with the ability of incremental self-updating. We evaluate our model to online scene categorization and experiments on various benchmark datasets and comparisons with state-of-the-art methods demonstrate the effectiveness and efficiency of our algorithm. Accepted version 2013-11-25T01:40:17Z 2019-12-06T20:18:42Z 2013-11-25T01:40:17Z 2019-12-06T20:18:42Z 2013 2013 Journal Article Cong, Y., Liu, J., Yuan, J., & Luo, J. (2013). Self-supervised Online Metric Learning with Low Rank Constraint for Scene Categorization. IEEE Transactions on Image Processing, 22(8), 3179-3191. 1057-7149 https://hdl.handle.net/10356/100216 http://hdl.handle.net/10220/17819 10.1109/TIP.2013.2260168 en IEEE transactions on image processing © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TIP.2013.2260168]. 13 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing Cong, Yang Liu, Ji Yuan, Junsong Luo, Jiebo Self-supervised online metric learning with low rank constraint for scene categorization |
description |
Conventional visual recognition systems usually train an image classifier in a bath mode with all training data provided in advance. However, in many practical applications, only a small amount of training samples are available in the beginning and many more would come sequentially during online recognition. Because the image data characteristics could change over time, it is important for the classifier to adapt to the new data incrementally. In this paper, we present an online metric learning method to address the online scene recognition problem via adaptive similarity measurement. Given a number of labeled data followed by a sequential input of unseen testing samples, the similarity metric is learned to maximize the margin of the distance among different classes of samples. By considering the low rank constraint, our online metric learning model not only can provide competitive performance compared with the state-of-the-art methods, but also guarantees convergence. A bi-linear graph is also defined to model the pair-wise similarity, and an unseen sample is labeled depending on the graph-based label propagation, while the model can also self-update using the more confident new samples. With the ability of online learning, our methodology can well handle the large-scale streaming video data with the ability of incremental self-updating. We evaluate our model to online scene categorization and experiments on various benchmark datasets and comparisons with state-of-the-art methods demonstrate the effectiveness and efficiency of our algorithm. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Cong, Yang Liu, Ji Yuan, Junsong Luo, Jiebo |
format |
Article |
author |
Cong, Yang Liu, Ji Yuan, Junsong Luo, Jiebo |
author_sort |
Cong, Yang |
title |
Self-supervised online metric learning with low rank constraint for scene categorization |
title_short |
Self-supervised online metric learning with low rank constraint for scene categorization |
title_full |
Self-supervised online metric learning with low rank constraint for scene categorization |
title_fullStr |
Self-supervised online metric learning with low rank constraint for scene categorization |
title_full_unstemmed |
Self-supervised online metric learning with low rank constraint for scene categorization |
title_sort |
self-supervised online metric learning with low rank constraint for scene categorization |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/100216 http://hdl.handle.net/10220/17819 |
_version_ |
1681042322837471232 |