Experimental investigation of linear-optics-based quantum target detection
The development of new techniques to improve measurements is crucial for all sciences. By employing quantum systems as sensors to probe some physical property of interest allows the application of quantum resources, such as coherent superpositions and quantum correlations, to increase measurement pr...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100220 http://hdl.handle.net/10220/48583 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-100220 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1002202023-02-28T19:38:56Z Experimental investigation of linear-optics-based quantum target detection Gu, Mile Aguilar, G. H. de Souza, M. A. Gomes, R. M. Thompson, J. Céleri, L. C. Walborn, S. P. School of Physical and Mathematical Sciences Complexity Institute Quantum Entanglement Quantum Metrology DRNTU::Science::Physics The development of new techniques to improve measurements is crucial for all sciences. By employing quantum systems as sensors to probe some physical property of interest allows the application of quantum resources, such as coherent superpositions and quantum correlations, to increase measurement precision. Here we experimentally investigate a scheme for quantum target detection based on linear optical measurement devices, when the object is immersed in unpolarized background light. By comparing the quantum (polarization-entangled photon pairs) and the classical (separable polarization states) strategies, we found that the quantum strategy provides us an improvement over the classical one in our experiment when the signal-to-noise ratio is greater than 1/40, or about 16 dB of noise. This is in constrast to quantum target detection considering nonlinear optical detection schemes, which have shown resilience to extreme amounts of noise. A theoretical model is developed which shows that, in this linear-optics context, the quantum strategy suffers from the contribution of multiple background photons. This effect does not appear in our classical scheme. By improving the two-photon detection electronics, it should be possible to achieve a polarization-based quantum advantage for a signal-to-noise ratio that is close to 1/400 for current technology. Published version 2019-06-06T08:56:06Z 2019-12-06T20:18:47Z 2019-06-06T08:56:06Z 2019-12-06T20:18:47Z 2019 Journal Article Aguilar, G. H., de Souza, M. A., Gomes, R. M., Thompson, J., Gu, M., Céleri, L. C., & Walborn, S. P. (2019). Experimental investigation of linear-optics-based quantum target detection. Physical Review A, 99(5), 053813-. doi:10.1103/PhysRevA.99.053813 2469-9926 https://hdl.handle.net/10356/100220 http://hdl.handle.net/10220/48583 10.1103/PhysRevA.99.053813 en Physical Review A © 2019 American Physical Society. All rights reserved. This paper was published in Physical Review A and is made available with permission of American Physical Society. 6 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Quantum Entanglement Quantum Metrology DRNTU::Science::Physics |
spellingShingle |
Quantum Entanglement Quantum Metrology DRNTU::Science::Physics Gu, Mile Aguilar, G. H. de Souza, M. A. Gomes, R. M. Thompson, J. Céleri, L. C. Walborn, S. P. Experimental investigation of linear-optics-based quantum target detection |
description |
The development of new techniques to improve measurements is crucial for all sciences. By employing quantum systems as sensors to probe some physical property of interest allows the application of quantum resources, such as coherent superpositions and quantum correlations, to increase measurement precision. Here we experimentally investigate a scheme for quantum target detection based on linear optical measurement devices, when the object is immersed in unpolarized background light. By comparing the quantum (polarization-entangled photon pairs) and the classical (separable polarization states) strategies, we found that the quantum strategy provides us an improvement over the classical one in our experiment when the signal-to-noise ratio is greater than 1/40, or about 16 dB of noise. This is in constrast to quantum target detection considering nonlinear optical detection schemes, which have shown resilience to extreme amounts of noise. A theoretical model is developed which shows that, in this linear-optics context, the quantum strategy suffers from the contribution of multiple background photons. This effect does not appear in our classical scheme. By improving the two-photon detection electronics, it should be possible to achieve a polarization-based quantum advantage for a signal-to-noise ratio that is close to 1/400 for current technology. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Gu, Mile Aguilar, G. H. de Souza, M. A. Gomes, R. M. Thompson, J. Céleri, L. C. Walborn, S. P. |
format |
Article |
author |
Gu, Mile Aguilar, G. H. de Souza, M. A. Gomes, R. M. Thompson, J. Céleri, L. C. Walborn, S. P. |
author_sort |
Gu, Mile |
title |
Experimental investigation of linear-optics-based quantum target detection |
title_short |
Experimental investigation of linear-optics-based quantum target detection |
title_full |
Experimental investigation of linear-optics-based quantum target detection |
title_fullStr |
Experimental investigation of linear-optics-based quantum target detection |
title_full_unstemmed |
Experimental investigation of linear-optics-based quantum target detection |
title_sort |
experimental investigation of linear-optics-based quantum target detection |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/100220 http://hdl.handle.net/10220/48583 |
_version_ |
1759854701818413056 |