Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling
The potential application of forward osmosis (FO) membranes in water treatment and desalination requires an improved understanding of the factors that govern the rejection of trace contaminants. This study investigated the influence of membrane orientation and organic fouling on the performance of F...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100260 http://hdl.handle.net/10220/13620 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-100260 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1002602020-03-07T11:43:44Z Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling Jin, Xue She, Qianhong Ang, Xueli Tang, Chuyang Y. School of Civil and Environmental Engineering Singapore Membrane Technology Centre DRNTU::Engineering::Environmental engineering The potential application of forward osmosis (FO) membranes in water treatment and desalination requires an improved understanding of the factors that govern the rejection of trace contaminants. This study investigated the influence of membrane orientation and organic fouling on the performance of FO membrane in removing boron and arsenic. Results of laboratory-scale crossflow membrane filtration experiments showed that the inorganic contaminants were rejected at a much lower rate when membrane active layer was facing draw solution (AL-DS) compared to the active layer-facing feed water (AL-FW) orientation, as a result of the more severe concentrative internal concentration polarization (ICP) in the latter orientation. The difference in boron rejection between the two membrane orientations was greater due to its higher permeability through the FO membrane. In the AL-FW orientation, the formation of an alginate fouling layer on the membrane surface could enhance the sieving effect and thus improve the rejection of arsenious acid with relatively larger molecular size. In the AL-DS orientation, alginate fouling in the membrane support layer had adverse effect on boron rejection at water flux below 4.2 μm/s (15.3 L/m2/h), attributed to the foulant enhanced concentrative ICP effect. Findings have important implications in the performance and applicability of FO membrane processes. 2013-09-24T03:48:02Z 2019-12-06T20:19:17Z 2013-09-24T03:48:02Z 2019-12-06T20:19:17Z 2011 2011 Journal Article Jin, X., She, Q., Ang, X., & Tang, C. Y. (2011). Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling. Journal of membrane science, 389, 182-187. https://hdl.handle.net/10356/100260 http://hdl.handle.net/10220/13620 10.1016/j.memsci.2011.10.028 en Journal of membrane science |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Environmental engineering |
spellingShingle |
DRNTU::Engineering::Environmental engineering Jin, Xue She, Qianhong Ang, Xueli Tang, Chuyang Y. Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
description |
The potential application of forward osmosis (FO) membranes in water treatment and desalination requires an improved understanding of the factors that govern the rejection of trace contaminants. This study investigated the influence of membrane orientation and organic fouling on the performance of FO membrane in removing boron and arsenic. Results of laboratory-scale crossflow membrane filtration experiments showed that the inorganic contaminants were rejected at a much lower rate when membrane active layer was facing draw solution (AL-DS) compared to the active layer-facing feed water (AL-FW) orientation, as a result of the more severe concentrative internal concentration polarization (ICP) in the latter orientation. The difference in boron rejection between the two membrane orientations was greater due to its higher permeability through the FO membrane. In the AL-FW orientation, the formation of an alginate fouling layer on the membrane surface could enhance the sieving effect and thus improve the rejection of arsenious acid with relatively larger molecular size. In the AL-DS orientation, alginate fouling in the membrane support layer had adverse effect on boron rejection at water flux below 4.2 μm/s (15.3 L/m2/h), attributed to the foulant enhanced concentrative ICP effect. Findings have important implications in the performance and applicability of FO membrane processes. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Jin, Xue She, Qianhong Ang, Xueli Tang, Chuyang Y. |
format |
Article |
author |
Jin, Xue She, Qianhong Ang, Xueli Tang, Chuyang Y. |
author_sort |
Jin, Xue |
title |
Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
title_short |
Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
title_full |
Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
title_fullStr |
Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
title_full_unstemmed |
Removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
title_sort |
removal of boron and arsenic by forward osmosis membrane : influence of membrane orientation and organic fouling |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/100260 http://hdl.handle.net/10220/13620 |
_version_ |
1681034883740205056 |