Biofilm growth and near-infrared radiation-driven photosynthesis of the chlorophyll d-containing cyanobacterium acaryochloris marina

The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Behrendt, Lars, Schrameyer, Verena, Qvortrup, Klaus, Lundin, Luisa, Kühl, Michael, Sørensen, Søren J., Larkum, Anthony W. D.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/100269
http://hdl.handle.net/10220/10965
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions.