CSS-like constructions of asymmetric quantum codes
Asymmetric quantum error-correcting codes (AQCs) may offer some advantage over their symmetric counterparts by providing better error-correction for the more frequent error types. The well-known CSS construction of q-ary AQCs is extended by removing the F q -linearity requirement as well as the limi...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100356 http://hdl.handle.net/10220/48582 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Asymmetric quantum error-correcting codes (AQCs) may offer some advantage over their symmetric counterparts by providing better error-correction for the more frequent error types. The well-known CSS construction of q-ary AQCs is extended by removing the F q -linearity requirement as well as the limitation on the type of inner product used. The proposed constructions are called CSS-like constructions and utilize pairs of nested subfield linear codes under one of the Euclidean, trace Euclidean, Hermitian, and trace Hermitian inner products. After establishing some theoretical foundations, best-performing CSS-like AQCs are constructed. Combining some constructions of nested pairs of classical codes and linear programming, many optimal and good pure q-ary CSS-like codes for q ∈ {2,3,4,5,7,8,9} up to reasonable lengths are found. In many instances, removing the F q -linearity and using alternative inner products give us pure AQCs with improved parameters than relying solely on the standard CSS construction. |
---|