Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound
Ultrasound-enhanced drug delivery has shown great promise in providing targeted burst release of drug at the site of the disease. Yet current solid ultrasound-responsive particles are non-degradable with limited potential for drug-loading. Here, we report on an ultrasound-responsive multi-cavity...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100425 http://hdl.handle.net/10220/49678 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-100425 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1004252023-12-29T06:46:36Z Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound Su, Xiaoqian Thomas, Reju George Bharatula, Lakshmi Deepika Kwan, James J. School of Chemical and Biomedical Engineering High Intensity Focused Ultrasound Drug Delivery Engineering::Chemical engineering Ultrasound-enhanced drug delivery has shown great promise in providing targeted burst release of drug at the site of the disease. Yet current solid ultrasound-responsive particles are non-degradable with limited potential for drug-loading. Here, we report on an ultrasound-responsive multi-cavity poly(lactic-co-glycolic acid) microparticle (mcPLGA MP) loaded with rhodamine B (RhB) with or without 4′,6-diamidino-2-phenylindole (DAPI) to represent small molecule therapeutics. After exposure to high intensity focused ultrasound (HIFU), these delivery vehicles were remotely implanted into gel and porcine tissue models, where the particles rapidly released their payload within the frst day and sustained release for at least seven days. RhB-mcPLGA MPs were implanted with HIFU into and beyond the sub-endothelial space of porcine arteries without observable damage to the artery. HIFU also guided the location of implantation; RhB-mcPLGA MPs were only observed at the focus of the HIFU away from the direction of ultrasound. Once implanted, DAPI co-loaded RhB-mcPLGA MPs released DAPI into the arterial wall, staining the nucleus of the cells. Our work shows the potential for HIFUguided implantation of drug-loaded particles as a strategy to improve the local and sustained delivery of a therapeutic for up to two weeks. NMRC (Natl Medical Research Council, S’pore) Published version 2019-08-19T01:12:28Z 2019-12-06T20:22:19Z 2019-08-19T01:12:28Z 2019-12-06T20:22:19Z 2019 2019 Journal Article Su, X., Thomas, R. G., Bharatula, L. D., & Kwan, J. J. (2019). Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound. Scientific Reports, 9(1). doi:10.1038/s41598-019-46022-0 https://hdl.handle.net/10356/100425 http://hdl.handle.net/10220/49678 10.1038/s41598-019-46022-0 214750 en Scientific Reports © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 13 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
High Intensity Focused Ultrasound Drug Delivery Engineering::Chemical engineering |
spellingShingle |
High Intensity Focused Ultrasound Drug Delivery Engineering::Chemical engineering Su, Xiaoqian Thomas, Reju George Bharatula, Lakshmi Deepika Kwan, James J. Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
description |
Ultrasound-enhanced drug delivery has shown great promise in providing targeted burst release of
drug at the site of the disease. Yet current solid ultrasound-responsive particles are non-degradable
with limited potential for drug-loading. Here, we report on an ultrasound-responsive multi-cavity
poly(lactic-co-glycolic acid) microparticle (mcPLGA MP) loaded with rhodamine B (RhB) with or without 4′,6-diamidino-2-phenylindole (DAPI) to represent small molecule therapeutics. After exposure to high intensity focused ultrasound (HIFU), these delivery vehicles were remotely implanted into gel and porcine tissue models, where the particles rapidly released their payload within the frst day and sustained release for at least seven days. RhB-mcPLGA MPs were implanted with HIFU into and beyond the sub-endothelial space of porcine arteries without observable damage to the artery. HIFU also guided the location of implantation; RhB-mcPLGA MPs were only observed at the focus of the HIFU away from the direction of ultrasound. Once implanted, DAPI co-loaded RhB-mcPLGA MPs released DAPI into the arterial wall, staining the nucleus of the cells. Our work shows the potential for HIFUguided implantation of drug-loaded particles as a strategy to improve the local and sustained delivery of a therapeutic for up to two weeks. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Su, Xiaoqian Thomas, Reju George Bharatula, Lakshmi Deepika Kwan, James J. |
format |
Article |
author |
Su, Xiaoqian Thomas, Reju George Bharatula, Lakshmi Deepika Kwan, James J. |
author_sort |
Su, Xiaoqian |
title |
Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
title_short |
Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
title_full |
Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
title_fullStr |
Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
title_full_unstemmed |
Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
title_sort |
remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/100425 http://hdl.handle.net/10220/49678 |
_version_ |
1787136471853957120 |