Structure of logarithmically divergent one-loop lattice Feynman integrals
For logarithmically divergent one-loop lattice Feynman integrals I(p,a) , subject to mild general conditions, we prove the following expected and crucial structural result: I(p,a)=f(p)log(aM)+g(p)+h(p,M) up to terms which vanish for lattice spacing a→0 . Here p denotes collectively the external mo...
Saved in:
Main Authors: | Lee, Weonjong., Adams, David H. |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100843 http://hdl.handle.net/10220/18279 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices
由: Wang, L., et al.
出版: (2014) -
Index of a family of lattice Dirac operators and its relation to the non-abelian anomaly on the lattice
由: Adams, David H.
出版: (2013) -
Simplified test of universality in lattice QCD
由: Adams, David H.
出版: (2013) -
Mathematical Theory of Feynman Path Integrals : an introduction
由: Albeverio, Sergio A., et al.
出版: (2017) -
Relation between bare lattice coupling and MS̅ coupling at one loop with general lattice fermions
由: Adams, David H.
出版: (2014)