New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties

New cationic linear copolymers of N-vinyl caprolactam (VCL) and N-acryloyl-N′-ethyl piperazine (AcrNEP) were synthesized by thermal free-radical solution polymerization in dioxane at 75 °C. The chemical composition of the copolymers was determined by 1H NMR spectroscopy. The copolymers were water-so...

Full description

Saved in:
Bibliographic Details
Main Authors: Deen, Gulam Roshan, Lim, Eu Kiat, Mah, Chin Hao, Heng, Kuang Meng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/100995
http://hdl.handle.net/10220/16757
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-100995
record_format dspace
spelling sg-ntu-dr.10356-1009952020-03-07T12:34:52Z New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties Deen, Gulam Roshan Lim, Eu Kiat Mah, Chin Hao Heng, Kuang Meng School of Physical and Mathematical Sciences DRNTU::Science::Chemistry New cationic linear copolymers of N-vinyl caprolactam (VCL) and N-acryloyl-N′-ethyl piperazine (AcrNEP) were synthesized by thermal free-radical solution polymerization in dioxane at 75 °C. The chemical composition of the copolymers was determined by 1H NMR spectroscopy. The copolymers were water-soluble at all composition and exhibited lower critical solution temperature (LCST) behavior. The LCST was greatly influenced by the AcrNEP content, changes in pH, temperature, salt and surfactant concentration of the external medium. The copolymers were rich in AcrNEP content due to its higher reactivity over VCL. The reactivity of AcrNEP and VCL were determined by the extended Kelen–Tüdös method to be r1AcrNEP = 0.41 and r2VCL = 0.13. The distribution of monomer sequence in the polymer chain was estimated using the terminal copolymerization model and the maximum tendency to alternation (70%) was at 45 mol % of AcrNEP in the feed. The effect of polymer concentration in the range 0.02 to 20 wt % on the LCST behavior showed a rather exponential decrease with the effect being more significant in the dilute regime. Simple inorganic salts such as sodium chloride and sodium bromide showed a salting-out effect while sodium iodide showed a salting-in effect of the copolymers in water. The salting-out coefficient of sodium chloride and sodium bromide evaluated by the Sestchenow equation was 1.37 and 1.12 L mol–1, respectively. The salting trend followed the order Cl– > Br– > I–. The intrinsic viscosity behavior and second-virial coefficient of the copolymers in water and in sodium chloride solution was studied in detail. Cross-linked cationic hydrogels of VCL and AcrNEP with a flexible (N,N′-methylenebisacrylamide) and stiff (1,4-diacryloyl piperazine) chemical cross-linker were prepared. The gels were responsive to pH and temperature changes of external medium. The influence of cross-linker type on the properties of the gels in terms of stimulus response, water transport mechanism, diffusion, and adsorption of an anionic dye (Congo red) were studied in detail. 2013-10-23T09:12:26Z 2019-12-06T20:31:49Z 2013-10-23T09:12:26Z 2019-12-06T20:31:49Z 2012 2012 Journal Article Deen, G. R., Lim, E. K., Mah, C. H., & Heng, K. M. (2012). New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties . Industrial & engineering chemistry research, 51(41), 13354-13365. 0888-5885 https://hdl.handle.net/10356/100995 http://hdl.handle.net/10220/16757 10.1021/ie301987m en Industrial & engineering chemistry research
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Science::Chemistry
spellingShingle DRNTU::Science::Chemistry
Deen, Gulam Roshan
Lim, Eu Kiat
Mah, Chin Hao
Heng, Kuang Meng
New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
description New cationic linear copolymers of N-vinyl caprolactam (VCL) and N-acryloyl-N′-ethyl piperazine (AcrNEP) were synthesized by thermal free-radical solution polymerization in dioxane at 75 °C. The chemical composition of the copolymers was determined by 1H NMR spectroscopy. The copolymers were water-soluble at all composition and exhibited lower critical solution temperature (LCST) behavior. The LCST was greatly influenced by the AcrNEP content, changes in pH, temperature, salt and surfactant concentration of the external medium. The copolymers were rich in AcrNEP content due to its higher reactivity over VCL. The reactivity of AcrNEP and VCL were determined by the extended Kelen–Tüdös method to be r1AcrNEP = 0.41 and r2VCL = 0.13. The distribution of monomer sequence in the polymer chain was estimated using the terminal copolymerization model and the maximum tendency to alternation (70%) was at 45 mol % of AcrNEP in the feed. The effect of polymer concentration in the range 0.02 to 20 wt % on the LCST behavior showed a rather exponential decrease with the effect being more significant in the dilute regime. Simple inorganic salts such as sodium chloride and sodium bromide showed a salting-out effect while sodium iodide showed a salting-in effect of the copolymers in water. The salting-out coefficient of sodium chloride and sodium bromide evaluated by the Sestchenow equation was 1.37 and 1.12 L mol–1, respectively. The salting trend followed the order Cl– > Br– > I–. The intrinsic viscosity behavior and second-virial coefficient of the copolymers in water and in sodium chloride solution was studied in detail. Cross-linked cationic hydrogels of VCL and AcrNEP with a flexible (N,N′-methylenebisacrylamide) and stiff (1,4-diacryloyl piperazine) chemical cross-linker were prepared. The gels were responsive to pH and temperature changes of external medium. The influence of cross-linker type on the properties of the gels in terms of stimulus response, water transport mechanism, diffusion, and adsorption of an anionic dye (Congo red) were studied in detail.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Deen, Gulam Roshan
Lim, Eu Kiat
Mah, Chin Hao
Heng, Kuang Meng
format Article
author Deen, Gulam Roshan
Lim, Eu Kiat
Mah, Chin Hao
Heng, Kuang Meng
author_sort Deen, Gulam Roshan
title New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
title_short New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
title_full New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
title_fullStr New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
title_full_unstemmed New cationic linear copolymers and hydrogels of N -vinyl caprolactam and N -acryloyl- N′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the LCST and swelling properties
title_sort new cationic linear copolymers and hydrogels of n -vinyl caprolactam and n -acryloyl- n′ -ethyl piperazine : synthesis, reactivity, influence of external stimuli on the lcst and swelling properties
publishDate 2013
url https://hdl.handle.net/10356/100995
http://hdl.handle.net/10220/16757
_version_ 1681035909462491136